Programul de studii: Enviromental Physics and Eco-Friendly Materials

Domeniul de studii: Fizică/Physics

Ciclul de studii: Master

Discipline obligatorii:

DI.101 Atmospheric Physics

DI.102 Ethics and academic integrity

DI.107 The climate system

DI.108 Dynamics of the Earth's interior and Seismology

DI.201 Meteorology / Meteorologie

DI.202 Advanced materials for environmental applications / Materiale avansate pentru aplicații de mediu

DI.203 Research activity / Practica de cercetare

DI.208 Elaboration of the dissertation thesis (4 weeks) / Finalizarea lucrării de disertație

DI.209 Research activity / Practica de cercetare

Discipline opționale:

DO.103.1 Dispersion of Pollutants

DO.103.2 Simulation and modelling of ecological polymeric materials

DO.104.1 Ecological (friendly enviro) polymer materials

DO.104.2 Pollution with plastic materials and waste management

DO.105.1 Polymer degradation methods

DO.105.2 Renewable energy sources

DO.109.1 Radionuclides, environmental radioactivity and radioactive waste management

DO.109.2 Modeling environmental and astrophysical processes

DO.110.1 Statistical methods in Earth and Atmosphere Physics

DO.110.2 Time series analysis

DO.204.1 Environmental magnetism / Magnetism cu aplicații în fizica mediului

DO.204.2 Earth's geomagnetic and gravity fields / Câmpurile geomagnetic și gravitațional ale Pământului

DO.205.1 Earth radiation budget / Bugetul radiativ al planetei

DO.205.2 Basics of energy audit/basics of environmental audit. Architectures and ecological houses

DO.210.1 Extreme phenomena. Meteorological and climatic risk

DO.210.2 Physical processes in clouds

Discipline facultative:

DFC.106 Volunteering

DFC.111 Volunteering

DFC.206 Volunteering

DFC.207 Physico-chemistry of the environment

DFC.211 Simulation methods, modelling for renewable and alternative energy sources

DFC.212 Volunteering

Academic year 2025/2026 DI.101 Atmospheric Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Atmospheric Physics
2.2. Teacher	Conf. dr. Bogdan Antonescu
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Bogdan Antonescu
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DS

3. Total estimated time

3. Iotai estimatea time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bib	liography	72
Research in library, study of e	lectronic res	ources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework			36		
Tutorat					0
Other activities					0
3.7. Total hours of individual study			144		
3.8. Total hours per semester			200		
3.9. ECTS			8		

4. Prerequisites (if necessary)

4.1. curriculum	Knowledge of Thermodynamics.
4.2. competences	Knowledge of using graphic representation programs and data processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its structure and dynamics, as well as the exchanges of energy and matter in the climate system. R4. The student/graduate knows the theoretical models, numerical and statistical methods applied in modeling physico-chemical processes in the field of environmental physics, ecological materials and renewable energy.
Skills	R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques.

Responsibility and autonomy

- R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community.
- R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Earth and his atmosphere	Systematic exposition - lecture. Examples.	2 Hours
Energy: Heating and cooling of the Earth and his atmosphereTemperature	Systematic exposition - lecture. Examples.	2 Hours
Temperature	Systematic exposition - lecture. Examples.	2 Hours
Humidity	Systematic exposition - lecture. Examples.	2 Hours
Condensation	Systematic exposition - lecture. Examples.	2 Hours
Atmospheric stability and cloud formation	Systematic exposition - lecture. Examples.	2 Hours
Precipitations	Systematic exposition - lecture. Examples.	2 Hours
Air pressure and wind	Systematic exposition - lecture. Examples.	2 Hours
Air masses and atmospheric fronts	Systematic exposition - lecture. Examples.	2 Hours
Extratropical cyclones. Introduction to weather forecasting	Systematic exposition - lecture. Examples.	2 Hours
Thunderstorms	Systematic exposition - lecture. Examples.	2 Hours
Tornadoes. Hurricanes	Systematic exposition - lecture. Examples.	2 Hours
Earth climate and climate changes	Systematic exposition - lecture. Examples.	2 Hours
Air pollution	Systematic exposition - lecture. Examples.	2 Hours

References:

- 1. Ahrens, C. G. and R. Henson, 2018: Meteorology Today–An Introduction to Weather, Climate, and the Environment. CENGAGE Learning Custom Publishing (12th edition edition), 656 pg.
- 2. Lackmann, G., 2011: Midlatitude Synoptic Meteorology. American Meteorological Society, 388 pg.
- 3. Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics. Wiley-Blackwell, 336 pg.
- 4. Markowski, P. and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes, Wiley-Blackwell, 430 pg.
- 5. Saucier, W. J., 1983: Principles of Meteorological Analysis. Dover Publications, 438 pg.
- 6. Inness, P. and S. Dorling, 2013: Operational Weather Forecasting. Wiley-Blackwell, 231 pg.
- 7. Rauber, R.M. and S.W. Nesbitt, 2018: Radar Meteorology-A First Course. Wiley-Blackwell, 461 pg.

7.3 Practicals	Teaching techniques	Observations
Meteorological observations	Supervised practical activity.	2 Hours
Analysis of time series from the weather observation stations	Supervised practical activity.	2 Hours
Vertical sounding of the atmosphere. Thermodynamic diagrams.	Supervised practical activity.	2 Hours
Analysis of thermodynamic processes using radiosounding data.	Supervised practical activity.	2 Hours
SkewT diagram		

Meteorological satellites. Numerical weather prediction model	Supervised practical activity.	4 Hours
Weather forecasting using numerical weather predictions models,	Supervised practical activity.	6 Hours
satellite data, and meteorological observations.		
Radar meteorology. Cloud and meteorological radars	Supervised practical activity.	4 Hours
Weather forecasting using radar data. Analysis of microphysics	Supervised practical activity.	4 Hours
of clouds using cloud radar		
Analysis of time series of the principal air pollutants	Supervised practical activity.	2 Hours

- 1. Ahrens, C. G. and R. Henson, 2018: Meteorology Today–An Introduction to Weather, Climate, and the Environment. CENGAGE Learning Custom Publishing (12th edition edition), 656 pg.
- 2. Lackmann, G., 2011: Midlatitude Synoptic Meteorology. American Meteorological Society, 388 pg.
- 3. Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics. Wiley-Blackwell, 336 pg.
- 4. Markowski, P. and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes, Wiley-Blackwell, 430 pg.
- 5. Saucier, W. J., 1983: Principles of Meteorological Analysis. Dover Publications, 438 pg.
- 6. Inness, P. and S. Dorling, 2013: Operational Weather Forecasting. Wiley-Blackwell, 231 pg.

Rauber, R.M. and S.W. Nesbitt, 2018: Radar Meteorology-A First Course. Wiley-Blackwell, 461 pg.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- The clarity, coherence and brevity of the	Written exam.	50%
	exposition.		
	- Correct use of calculation models, formulas and		
	relationships.		
	- The ability to exemplify.		
Practical	- Knowledge and use of the experimental	Oral examination.	50%
	techniques		
	- Interpretation of the results		
Minimal	Achieving a minimum grade of 5:		
requirements	- Attendance: presence at a minimum of 50% of the course hours and mandatory attendance at all		
for passing	laboratory sessions.		
the exam	- At least 50% in each of the criteria that determine the final grade.		
	Obtaining a grade of 10:		
	- In addition to the criteria for obtaining a grade of 5:		
	- Correct resolution of all subjects.		
	- Skills and deeply well-argued knowledge.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Bogdan Antonescu Conf. dr. Bogdan Antonescu

Date of approval Head of department

name and signature

Academic year 2025/2026 DI.102 Ethics and academic integrity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Ethics and academic integrity
2.2. Teacher	lector dr.Sanda Voinea
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification DS

3. Total estimated time

3.1. Hours per week	1	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	14	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	31
Research in library, study of electronic resources, field research				15	
Preparation for practicals/tutorials/projects/reports/homework				15	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				61	
3.8. Total hours per semester				75	
3.9. ECTS				3	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate knows the ethical norms and principles that regulate scientific research in the field and acquires a culture of responsibility in intellectual work.
Skills	R10. The student/graduate assimilates both the explicit norms (texts with normative value) and the implicit ones (customs and practices) that regulate academic and research conduct.
Responsibility and autonomy	R10. The student/graduate demonstrates solidarity, reactivity and support in strengthening academic integrity, demonstrating responsible and ethical behavior in scientific activities.

7. Contents

7. Contents		
7.1 Lecture [chapters]	Teaching techniques	Observations
Moral evaluation frameworks. Fundamental concepts of ethics.	Lecture. Example.	2 Hours
	Discussion.	
Ethics and the scientific community.		
Criteria for moral evaluation: consequences / intentions,		
virtues.		

Academic integrity: institutional tools.	Lecture. Discussion.	Example.	2 Hours
Codes and ethics commissions.			
Principles of research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Challenges and dilemmas in research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Publication ethics: authorship and co-authorship	Lecture.	Example.	2 Hours
	Discussion.		
Access to resources (fairness and equity in academic	Lecture.	Example.	2 Hours
organizations and research teams)	Discussion.		
Deontology of teamwork in scientific research	Lecture.	Example.	2 Hours
	Discussion.		

Julian Baggini, Peter S. Fosl, A Compendium of Ethical Concepts and Methods, Blackwell Publishing, 2014.

Blaxter, L, Hugh, C. Tight, L. How to research, New York, 2006

Angelo Corlett. "The Role of Philosophy in Academic Ethics", Journal of Academic Ethics, Volume 12, Issue 1, pp 1–14, 2014

Codul de etică al Universității din București https://unibuc.ro/wp-content/uploads/2021/01/CODUL-DE-ETICA-SI-DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf

Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)

Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.

Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002

Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.

James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.

Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dilemma: Talking about Plagiarism and Academic Integrity in the Digital Age", English Journal 100.6, pp. 47–53, 2011

Anthony Weston, A Practical Companion to Ethics, Oxford University Press, 2011

Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006

Bretag, T. (ed), Handbook of Academic Integrity, Singapore: Springer, 2016

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical implications for impact. Not only abstract arguments and positions are discussed and evaluated, but also issues related to the ethical infrastructure of academic organizations or moral decision-making tools that can be used by students in their academic work and future professional life

9. Assessment

	Assessment					
Activity type	Assessment criteria	Assessment methods	Weight în			
			final mark			
Lecture	Ability to incorporate the principles of academic	Written essay as outlined in the	100%			
	ethics and use the principles of academic writing	course requirements				

Minimal	Achieving the grade of ADMISSION in the essay, attending at least 50% of the courses
requirements	
for passing	
the exam	

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
13.07.2025 lector dr.Sanda Voinea

Date of approval Head of department

name and signature

Academic year 2025/2026 DI.107 The climate system

1. Study program

~	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	The climate system		
2.2. Teacher	Prof. dr. Mihai Dima		
2.3. Tutorials/Practicals instructor(s)	Prof. dr. Mihai Dima		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DS		

3. Total estimated time

St Total estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bit	oliography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

_		 •
4	4.1. curriculum	
2	4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge

Skills R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system. R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field. Responsibility The student/graduate has the ability to plan and implement complex projects related to and autonomy atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community. R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary. R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.

concepts specific to the field, demonstrating analysis and synthesis skills.

R12. The student/graduate solves specific requirements by identifying regularities, notions and

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
The importance of understanding the physical processes in the	Systematic presentation.	2 Hours
climate system	Examples	
The climate system: its structure; definition of climate and of	Systematic presentation.	2 Hours
climate variability; climate variability at various time scales.	Examples	
The observed structure of the climate system over the last century	Systematic presentation.	6 Hours
	Examples	
Basic equation for atmosphere and ocean	Systematic presentation.	4 Hours
	Examples	
The main cycles in the climate system: energetic, of angular	Systematic presentation.	6 Hours
momentum, hydrologic and of Carbon,	Examples	
Interannual and decadal climate variability: the El-Nino Southern	Systematic presentation.	4 Hours
Oscillation phenomenon. The Atlantic Multidecadal Oscillation	Examples	
Paleoclimatology: methods to reconstruct past climate variations	Systematic presentation.	2 Hours
Centennial and millennial climate variability: Dansgaard-	Examples	
Oeschger and Heinrich events		
Orbital scale climate variability: glacial/inter-glacial cycles	Systematic presentation.	2 Hours
	Examples	

References:

- 1. Peixoto J and Oort K., J., 1998: Physics of Climate, Ed New York, pp. 650.
- 2. Holton J. R., Hakim, G. J., 2013: An Introduction to Dynamics Meteorology, Academic Press, UK pp. 524.

7.3 Practicals	Teaching techniques	Observations
Visualizing climate data with GRADS (Grid Analysis Data	Systematic presentation.	4 Hours
System).	Examples. Exercises	
Processing climate data with GRADS	Systematic presentation.	4 Hours
	Examples. Exercises	

Inferring properties of the El Nino Southern Oscillation	Systematic presentation.	4 Hours
phenomenon from climatic data	Examples. Exercises	
Inferring properties of the Atlantic Multidecadal Oscillation from	Systematic presentation.	4 Hours
climatic data	Examples. Exercises	
Identifying the quasi-periodic components of climate indices	Systematic presentation.	4 Hours
using the Singular Spectrum Analysis method	Examples. Exercises	
Identifying the quasi-periodic components of climate indices	Systematic presentation.	4 Hours
using the wavelet method	Examples. Exercises	
Identifying the quasi-periodic components in paleoclimatic data	Systematic presentation.	4 Hours
	Examples. Exercises	

GRADS user's manual: http://cola.gmu.edu/grads/

Vauratd, R., Ghil, M., 1989: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D: Nonlinear Phenomena.

Torrence, C., Compo, G. P., 1998: A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Before deciding about the content of the course, given the scientific and socio-economic signnificance of the topic, the tenured teaching staff have reviewed the content of similar courses taught in foreign universities. The content of the course is aligned with the requirements for teaching and research positions in various institutions.

9. Assessment

Assessment criteria	Assessment methods	Weight în final mark
clarity and coherence of formulationssuitable use of models and analitic formulasability to provide examples	Written examination	70%
Knowledge about using the GRADS applicationInterpreting the results	Homework during the semester	30%
 Attendance: presence at a minimum of 50% of alaboratory sessions. At least 50% in each of the criteria that determine Obtaining a grade of 10: In addition to the criteria for obtaining a grade of Correct resolution of all subjects. 	the final grade.	tendance at all
	 suitable use of models and analitic formulas ability to provide examples Knowledge about using the GRADS application Interpreting the results Achieving a minimum grade of 5 in each exam. Attendance: presence at a minimum of 50% of laboratory sessions. At least 50% in each of the criteria that determine Obtaining a grade of 10: In addition to the criteria for obtaining a grade of 	- clarity and coherence of formulations - suitable use of models and analitic formulas - ability to provide examples - Knowledge about using the GRADS application - Interpreting the results - Achieving a minimum grade of 5 in each exam Attendance: presence at a minimum of 50% of the course hours and mandatory at laboratory sessions At least 50% in each of the criteria that determine the final grade. Obtaining a grade of 10: - In addition to the criteria for obtaining a grade of 5: - Correct resolution of all subjects.

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr. Mihai Dima Prof. dr. Mihai Dima

Date of approval

Head of department
name and signature

Academic year 2025/2026

DI.108 Dynamics of the Earth's interior and Seismology

1. Study program

University of Bucharest
Faculty of Physics
Matter Structure, Atmospheric and Earth Physics, Astrophysics
Fizică/Physics
Master
Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Dynamics of the Earth's interior and Seismology		
2.2. Teacher	Conf. dr. Cristian Necula		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Cristian Necula		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DA		

3. Total estimated time

or rotal estimated time					
3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	61
Research in library, study of electronic resources, field research			31		
Preparation for practicals/tutorials/projects/reports/homework			30		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			122		
3.8. Total hours per semester			150		
3.9. ECTS					6

4. Prerequisites (if necessary)

	• • • • • • • • • • • • • • • • • • • •
4.1. curriculum	Electricity and magnetism, solid state physics
4.2. competences	Usage of specific software packages for data analysis and processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector, iinternet acces		
5.2. for tutorials/practicals	Software packages (open source or licensed) to analyze seismological data, on-line		
	access to international database, experiments in seismology and plate tectonics		

Knowledge	R5. The student/graduate knows the physical processes that govern the internal structure of the Earth, the propagation of seismic waves, the analysis of gravitational and geomagnetic fields and their interaction with the environment. R12. The student/graduate uses fundamental and specialized notions to explain and interpret various concepts, situations, processes and projects.
Skills	R5. The student/graduate can analyze seismic, magnetic and gravimetric data, using geophysical methods and theoretical models to characterize the structure and internal evolution of the planet. The student/graduate can apply scientific methods and critically interpret experimental data obtained in the laboratory. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.

Responsibility	R5. The student/graduate has the ability to plan and implement complex projects that integrate
and autonomy	geophysical results in applied contexts, such as natural hazards or environmental monitoring,
	effectively communicating results within research teams and to decision-makers.
	R12. The student/graduate solves specific requirements by identifying regularities, notions and
	concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents

7.1 Lecture [chapters]	Teaching techni	iques	Observations
1. Rheological properties of rocks. Seismic waves	Systematic	exposition	2 Hours
	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	
2. Internal structure of the Earth. Global earthquakes distribution	Systematic	exposition	2 Hours
	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	
3. Physical processes in the mantle and core. Fundamentals of	Systematic	exposition	4 Hours
plate tectonics	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	
4. Kinematics of present day lithospheric plates. Plate tectonics	Systematic	exposition	2 Hours
and Global positioning system (GPS)	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	
5. Long term kinematics of lithospheric plates.	Systematic	exposition	2 Hours
Paleoreconstruction of plate tectonics	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	
6. Reference systems of the Earth. Continuum deformation of	Systematic	exposition	2 Hours
lithospheric plates	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Examp	les	

References:

Butler, R.F., 1992. Paleomagnetism: from magnetic domains to geological terains, Blackwell Scientific Publications

Fowler, C.M.R., 1990. The solid Earth. An introduction to global geophysics. Cambridge University Press.

Lowrie, W., 2001. Fundamentals of Geophysics. Cambridge University Press

7.3 Practicals	Teaching techniques	Observations
1. Analysis of seismic waves, main parameters of an earthquake,	Supervised practical activity	6 Hours
global earthquakes distribution/ Analysis of marine magnetic		
anomalies		
2. Data bases in plate tectonics. Analysis of the present day plate	Supervised practical activity	4 Hours
tectonics		
3. Measuring the parameters of long term movements of	Supervised practical activity	4 Hours
lithospheric plates. Analysis of past lithospheric plates		

References:

Fowler, C.M.R., 1990. The solid Earth. An introduction to global geophysics. Cambridge University Press.

Lowrie, W., 2001. Fundamentals of Geophysics. Cambridge University Press

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms/develops theoretical and practical competences and abilities which are important for a Master student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 coherence and clarity of exposition appropriate use of environmental magnetism methods and concepts ability to apply to specific examples 		50%
Practical	- Application of environmental magnetism methods on a given particular data - results interpretation		50%
Minimal	- Achieving a minimum grade of 5 in exam.		
requirements	- Attendance: presence at a minimum of 50% of the course hours and mandatory attendance at all		
for passing	laboratory sessions.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Cristian Necula Conf. dr. Cristian Necula

Date of approval Head of department

name and signature

Academic year 2025/2026 DI.201 Meteorology / Meteorologie

1. Study program

V 1 8	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Meteorology / Meteorologie		
2.2. Teacher	Conf. dr. Bogdan Antonescu, CS1 Dr. Mihaela Caian		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Bogdan Antonescu		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation examen 2.7.Classification DA		

3. Total estimated time

3. Iotal Cstillated tille					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bib	liography	47
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				94	
3.8. Total hours per semester					150
3.9. ECTS					6

4. Prerequisites (if necessary)

Trerequisites	(ii necessary)
4.1. curriculum	Knowledge of Thermodynamics
4.2. competences	Knowledge of using graphic representation programs, data processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its structure and dynamics, as well as the exchanges of energy and matter in the climate system. R8. The student/graduate knows the computer tools and specialized programs used in data analysis and computational simulation.
Skills	R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials.

Responsibility and autonomy

- R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community.
- R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Atmospheric air parcel. Basic concepts. Atmospheric continuum.	Systematic exposition -	2 Hours
Scale analysis. The forces acting on the air parcel: pressure gradient force, gravitational force, friction force, Coriolis force.	lecture. Examples.	
Conservation laws. The vector form of the momentum equation	Systematic exposition -	4 Hours
in the rotating Earth coordinate system. Equations of motion in	lecture. Examples.	. 110 0115
spherical coordinates. Scale analysis of the equation of motion.	•	
Geostrophic and hydrostatic approximation. The continuity		
equation. Thermodynamic energy equation. Thermodynamics of		
the dry atmosphere.		
The fundamental system of equations in different coordinate	Systematic exposition -	4 Hours
systems. a) Basic equations in isobaric coordinates. b) Flow at	lecture. Examples.	
equilibrium. Trajectories and current lines. c) Approximations of		
the wind in the atmosphere. Thermal wind.		(II
Circulation and vorticity. a) The circulation theorems: Kelvin and Bjerkness. b) The sea breeze phenomenon. c) Vorticity. Potential	Systematic exposition - lecture. Examples.	6 Hours
vorticity; d) Vorticity equations and divergences. Periodic	lecture. Examples.	
movements in the atmosphere. a) Perturbation method. Waves		
properties. b) Types of simple waves. c) Rossby waves.		
Synoptic elements: Air masses - transformation of air masses;	Systematic exposition -	4 Hours
baric and geopotential patterns; fronts and frontogenesis.	lecture. Examples.	
Synoptic-scale movement dynamics: The observed structure of	Systematic exposition -	4 Hours
mid-latitude synoptic systems; deducing the quasi-geostrophic	lecture. Examples.	
system of equations.		
The development and movement of synoptic systems at middle	Systematic exposition -	4 Hours
latitudes: a) hydrodynamic instability; b) baroclinic instability-	lecture. Examples.	
cyclogenesis; vertical movement in unstable baroclinic waves; c)		
energetics of baroclinic waves.		

References:

- 1. Holton J., 2012: An Introduction to Dynamic Meteorology. Academic Press, pp. 512.
- 2. Martin J., 2006: Mid-latitudine atmospheric dynamics, Ed Wiley and Sons, pp. 400.

7.3 Practicals	Teaching techniques	Observations
Meteorological information. Synoptic code: types of telegrams,	Lecture. Problem solving.	4 Hours
coding and decoding of meteorological observation data.		
Synoptic maps: analysis of baric formations and frontological	Lecture. Problem solving.	2 Hours
analysis.		
Determining the trajectories of air masses and meteograms) with	Lecture. Problem solving.	4 Hours
the HYSPLIT 4 model.		
Imaging: non-analytical from satellite and radar data;	Lecture. Problem solving.	4 Hours
determination of ground temperature.		
Objective methods for determining cyclogenesis and cyclone	Lecture. Problem solving.	6 Hours
trajectories. The barotropic and modified barotropic model.		
Case studies: Mediterranean and orographic cyclogenesis; cases	Lecture. Problem solving.	2 Hours
of intense vertical descent.		

Numerical modeling for weather forecasting: a) filtering sound	Lecture. Problem solving.	6 Hours	
and gravity waves; b) baroclinic model with two parameters;			
c) the numerical solution of the barotropic vorticity equation -			
relaxation and integration over time; d) sigma coordinate and			
model with two primitive equations.			

- 1. Holton J., 2012: An Introduction to Dynamic Meteorology. Academic Press, pp. 512.
- 2. Martin J., 2006: Mid-Latitudine Atmospheric Dynamics. Wiley and Sons, pp. 400.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în			
			final mark			
Lecture	The clarity, coherence and brevity of the exposition.Correct use of calculation models, formulas and	Written exam.	50%			
	relationships.					
	- The ability to exemplify.					
Practical	Interpretation of the results	Problems solved during the tutorials	50%			
Minimal	Achieving a minimum grade of 5:					
requirements	- Attendance: presence at a minimum of 50% of	the course hours and mandatory at	tendance at all			
for passing	laboratory sessions.					
the exam	- At least 50% in each of the criteria that determine	the final grade.				
	Obtaining a grade of 10:					
	- In addition to the criteria for obtaining a grade of 5:					
	- Correct resolution of all subjects.					
	- Skills and deeply well-argued knowledge.					

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Bogdan Antonescu, CS1 Dr. Conf. dr. Bogdan Antonescu

Mihaela Caian

Date of approval Head of department

name and signature

Academic year 2025/2026

DI.202 Advanced materials for environmental applications / Materiale avansate pentru aplicații de mediu

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2. Course unit							
2.1. Course unit title		Advanced materials for environmental applications / Materiale avansate					
		pentru aplicații de mediu					
2.2. Teacher		Conf.Dr. Anca Dumitru					
2.3. Tutorials/Practicals instructor(s)		Co	nf.Dr. Anca Dumitru				
2.4 Year of study	2	2.5. Semester	1	2.6. Type of evaluation	examen	2.7.Classification	DA

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0	
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0	
Distribution of estimated time for study						
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	47	
Research in library, study of electronic resources, field research						
Preparation for practicals/tutorials/projects/reports/homework						
Tutorat						
Other activities						
3.7. Total hours of individual study						
3.8. Total hours per semester						
3.9. ECTS					6	

4. Prerequisites (if necessary)

1 1 1	() · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Basic knowledge of Physics, Mathematics and Chemistry
4.2. competences	use of software packages for data analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom equipped with multimedia devices			
5.2. for tutorials/practicals	practicals Set of practical work illustrating the topics covered in the course; Consumables;			
	Computers and software for data analysis			

Knowledge	R3. The student/graduate knows the theoretical and practical concepts regarding the properties
	and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or
	porous materials) for their application in environmental monitoring and remediation processes.
	R6. The student/graduate understands the mechanisms of pollutant transport and transformation,
	the sources and impact of plastic and radioactive materials, the functioning of green energy systems,
	as well as the methodological framework for environmental and energy audits.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.

	Skills	R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact.				
		R6. The student/graduate can implement methods for analyzing the impact of pollutants and the				
		life cycle of materials, understand the transport and transformation processes of substances in the				
		environment, and systematically use audit techniques and strategies for sustainable resource and waste management.				
		R7. The student/graduate can autonomously select and operate equipment and instruments				
		appropriate to the investigated context, depending on the nature of the parameters and the level of				
		precision required. Collects experimental data, operates equipment specific to scientific research				
		and laboratory activities and performs laboratory tests.				
ļ						
	Responsibility	R3. The student/graduate has the ability to plan and implement complex projects in the field				
	and autonomy	of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce				
		environmental impact, effectively disseminating the results in the scientific community.				
		R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting				
		audit results and substantiating decisions regarding energy and ecological sustainability.				
		R7. The student/graduate can choose the optimal working solution by critically comparing				
		available alternatives, evaluating the technological and ecological impact in the short, medium				
		and long term, to support sustainable and scientifically based decisions.				

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductive information. Global challenges in the field of environmental pollution. European strategies in the field of development of advanced materials with environmental	Lecture. Case study presentations. Discussions	4 Hours
applications Implications of the use of advanced materials in environmental applications.		
Air pollution. Index of air quality	Lecture. Case study presentations. Discussions	2 Hours
Water resources. Water pollution. Index of water quality	Lecture. Case study presentations. Discussions	2 Hours
Soil pollution and remediation	Lecture. Case study presentations. Discussions	2 Hours
Wastewater treatment of municipal and industrial wastewater. Drinking water treatment. Environmental problems. Water treatment methods. Physical, chemical and biological processes.	Lecture. Case study presentations. Discussions	4 Hours
Classification of Advanced Environmental Materials	Lecture. Case study presentations. Discussions	2 Hours
Nanotechnology for Environemtal monitoring and remediation	Lecture. Case study presentations. Discussions	2 Hours
Adsorbent Materials for Air and Water Purification	Lecture. Case study presentations. Discussions	2 Hours
Photocatalytic Materials	Lecture. Case study presentations. Discussions	2 Hours
Materials for Renewable Energy Systems	Lecture. Case study presentations. Discussions	2 Hours
Sensors for Environmental Monitoring	Lecture. Case study presentations. Discussions	2 Hours
Application of Advanced Green Sustainable Materials for Environmental Applications. Circular Economy Approaches	Lecture. Case study presentations. Discussions	2 Hours

7.3 Practicals	Teaching techniques	Observations
Presentation of the practical work. Training for laboratory work and safety	Lecture	2 Hours
Synthesis of advanced materials based on carbon nanotubes, graphene, nano-oxides (TiO2, Fe3O4, etc.) and their performance as adsorbent materials for various pollutants.	practical activity	10 Hours
Electrochemical behavior of carbon-based materials in different environment	practical activity	8 Hours
Electrochemical sensors based on conducting polymers and carbon nanomaterials	practical activity	8 Hours

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
7 cuvity type	Assessment criteria	Assessment methods	final mark
			IIIIai IIIai K
Lecture	- coherence and clarity of exposition	Oral examination	70%
	- correct use of knowledge and terminology used in		
	the area of advanced materials and environmental		
	applications		
	- ability to indicate/analyze specific examples		
Practical	- ability to use specific experimental	Examination of Lab reports	30%
	methods/apparatus	_	
	- ability to analyse and interpret the		
	characterization data		
	- ability to present and discuss the results		
Minimal	correct use of knowledge and terminology used in	the area of advanced materials and	environmental
requirements	applications		
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf.Dr. Anca Dumitru Conf.Dr. Anca Dumitru

Date of approval Head of department name and signature

Academic year 2025/2026 DI.203 Research activity / Practica de cercetare

1. Study program

F		
1.1. University	University of Bucharest	
1.2. Faculty Faculty of Physics		
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study Fizică/Physics		
1.5. Course of study	Master	
1.6. Study program	Environmental Physics and Eco-Friendly Materials	

2. Course unit

2.1. Course unit title	Research activity / Practica de cercetare
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation colocviu 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated tim	e for study	1			
Learning by using one's own	course no	tes, manuals, lectur	e notes,	bibliography	100
Research in library, study of electronic resources, field research				50	
Preparation for practicals/tutorials/projects/reports/homework				50	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			200		
3.8. Total hours per semester			200		
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curricu	ulum	Knowledge from previously studied courses.
4.2. compe	etences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.
	R12. The student/graduate uses fundamental and specialized notions to explain and interpret
	various concepts, situations, processes and projects.

	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests. R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.
1 - 1	R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions. R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers. R12. The student/graduate solves specific requirements by identifying regularities, notions and concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course meets the current national and international requirements for the development of practical skills in higher education.

Internships will be carried out in laboratories, research institutes, or companies that have established collaboration agreements for student practice. The targeted fields of activity are diverse, with potential employers ranging from educational to research and development environments.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final mark	
Project	The evaluation is carried out in accordance with Colloquium 100		100%	
	the faculty's internship regulations, based on an			
	internship report prepared by the student during			
	the activity and the assessment of the internship			
	supervisor.			
Minimal	To obtain a grade of 5:			
requirements	Completion of all activities during the internship period			
for passing	To obtain a grade of 10:			
the exam	Strongly reasoned skills and knowledge			
	Demonstrated ability to analyze phenomena and processes			
	Personal approach and interpretation			
	Correct resolution of all assigned topics			

Date,

Teacher's

13.07.2025

name and signature,

Conf. Dr. Cătălin Berlic

Practicals/Tutorials/Project instructor(s),

Date of approval

15.07.2025

Head of department name and signature

name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.208 Elaboration of the dissertation thesis (4 weeks) / Finalizarea lucrării de disertație

1. Study program

1.1. University	University of Bucharest
1.2. Faculty Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2. Course unit				
2.1. Course unit title	Elaboration of the dissertation thesis (4 weeks) / Finalizarea lucrării de			
	disertație			
2.2. Teacher				
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic			
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation colocviu 2.7. Classification			

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/4/0
3.4. Total hours per semester	40	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/40/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse note	s, manuals, lectur	e notes,	bibliography	43
Research in library, study of electronic resources, field research				21	
Preparation for practicals/tutorials/projects/reports/homework				21	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			85		
3.8. Total hours per semester			125		
3.9. ECTS				5	

4. Prerequisites (if necessary)

4.1. curriculum Completion of courses from the first and second year curriculum		Completion of courses from the first and second year curriculum
	4.2. competences	Knowledge of physics, mathematics, programming languages and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R9. The student/graduate knows the terminology specific to the field of environmental physics and ecological materials, for the purpose of effective communication in professional environments and towards society. R10. The student/graduate knows the ethical norms and principles that regulate scientific research in the field and acquires a culture of responsibility in intellectual work.
Skills	R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner. R10. The student/graduate assimilates both the explicit norms (texts with normative value) and the implicit ones (customs and practices) that regulate academic and research conduct.

Responsibility	R9. The student/graduate has the ability to interact with key actors in the field of environmental
and autonomy	physics and ecological materials, at the national and global level, disseminating results in the
	scientific community and publishing academic papers.
	R10. The student/graduate demonstrates solidarity, reactivity and support in strengthening
	academic integrity, demonstrating responsible and ethical behavior in scientific activities.

7. Contents

7.3 Practicals	Teaching techniques	Observations
In accordance with the research topic chosen for the dissertation.	Guided activity	40 Hours
The topics will be aligned with subjects of interest in the field of		
environmental physics and eco-friendly materials.		
References:		

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The discipline develops studentst abilities to model, to make experiments, to investigate environmental phenomena, in order to integrate them in the activities of collaborating research institutions. This provides a good scientific background which facilitates students integration in the working market and also provides the possibility to continue the studies in the doctoral program.

9. Assessment

9. Assessmo	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Practical	- Attendance at all research activities	Colloquium - Oral examination	100%
	- The application of specific methods of solving		
	the given problem;		
	- Interpretation of results;		
	- The clarity, coherence and brevity of the		
	exposition		
Minimal	Mandatory attendance at all research activities		
requirements	Preparation of the dissertation thesis		
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

Academic year 2025/2026 DI.209 Research activity / Practica de cercetare

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Research activity / Practica de cercetare
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation colocviu 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	8	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/8/0
3.4. Total hours per semester	80	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/80/0
Distribution of estimated time	for study		<u>I</u>		
Learning by using one's own o	ourse notes	s, manuals, lectur	e notes, b	ibliography	210
Research in library, study of el	lectronic re	sources, field rese	earch		105
Preparation for practicals/tutorials/projects/reports/homework			105		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			420		
3.8. Total hours per semester			500		
3.9. ECTS			20		

4. Prerequisites (if necessary)

4.1. curricu	ulum	Knowledge from previously studied courses.
4.2. compe	etences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.
	R12. The student/graduate uses fundamental and specialized notions to explain and interpret
	various concepts, situations, processes and projects.

Skills	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests. R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.
Responsibility and autonomy	R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions. R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers. R12. The student/graduate solves specific requirements by identifying regularities, notions and concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents

7.3 Practicals	Teaching techniques	Observations
Research activities specific to the fields of environmental physics and eco-friendly materials	Guided activity	80 Hours
References:		

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course meets the current national and international requirements for the development of practical skills in higher education.

Internships will be carried out in laboratories, research institutes, or companies that have established collaboration agreements for student practice. The targeted fields of activity are diverse, with potential employers ranging from educational to research and development environments.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Practical	The evaluation is carried out in accordance with the faculty's internship regulations, based on an internship report prepared by the student during the activity and the assessment of the internship supervisor.	•	100%

Minimal requirements for passing the exam

To obtain a grade of 5:

- Completion of all activities during the internship period To obtain a grade of 10:
- Strongly reasoned skills and knowledge
- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation
- Correct resolution of all assigned topics

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department

name and signature

Academic year 2025/2026 DO.103.1 Dispersion of Pollutants

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Dispersion of Pollutants
2.2. Teacher	Lector Dr. Gabriela Iorga
2.3. Tutorials/Practicals instructor(s)	Lector Dr. Gabriela Iorga
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DA

3. Total estimated time

	4	2.2.1		2.2 5 1.15	0.10.10
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	60
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

	(J)
4.1. curriculum	Fluid Mechanics, Thermodynamics, Notions of mathematics and chemistry
4.2. competences	Knowledge and practical capabilities of using the computer - Use of software packages for data
	analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment, white/black board and with internetconnection,			
	possibility of multiplying didactic materials in advance			
5.2. for tutorials/practicals	Laboratory with modern equipment that allows performing fundamental experiments:			
	samplers, ceilometer, meteorological station; Computers and acquisition interfaces			
	enabling computer-aided experiments; Access to the equipment for air sampling (gases,			
	aerosols) and to databases with atmospheric observations; Specialized calculation			
	programs (licensed or open source) for determining pollutant concentrations in the			
	atmosphere and/or deposited on the land surface, trajectories of air masses, various Exc			
	spreadsheets for the study of pollutant dispersion in different conditions of atmospheric			
	stability/instability, for determining the height of the atmospheric mixture layer of			
	pollutants.			

Knowledge	R6. The student/graduate understands the mechanisms of pollutant transport and transformation,
	the sources and impact of plastic and radioactive materials, the functioning of green energy systems,
	as well as the methodological framework for environmental and energy audits.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.

Skills	R6. The student/graduate can implement methods for analyzing the impact of pollutants and the life cycle of materials, understand the transport and transformation processes of substances in the environment, and systematically use audit techniques and strategies for sustainable resource and waste management. R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests.
Responsibility and autonomy	R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting audit results and substantiating decisions regarding energy and ecological sustainability. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions.

7. Contents

7.1 Lecture [chapters]	Teaching techniques		Observations	
Pollution versus air quality. Sources and types of pollutants. Different classifications. Main and secondary gaseous pollutants and particulate matter (PM2.5, PM10, PM4, PM1); physical and chemical properties. Air quality monitoring. Measurement methods and techniques (in situ and remote sensing).	Lecture, explanation, debate	description, conversation,	4 Hours	
Settling particles. Dry deposition and wet deposition. Processes and methods for monitoring of depositions. Deposition simulation models.	Lecture, explanation, debate	description, conversation,	2 Hours	
Legislation regarding ambient air quality in the world, in the European Union and in Romania. Environmental pollution monitoring programs and intensive measurement campaigns. Differences between monitoring and intensive campaign; examples and case studies.	Lecture, explanation, debate	description, conversation,	2 Hours	
Planetary boundary layer PBL: Definition and meaning. Structure. Quantities that characterize PBL: wind, temperature, humidity, mixing height; thermal inversions; the stability/instability of the atmosphere in the PBL. Methods for determining PBL characteristics. The influence of PBL characteristics on the dispersion of pollutants. The ventilation coefficient.	Lecture, explanation, debate	description, conversation,	6 Hours	
The theoretical basis of pollutant dispersion. Lagrange and Euler formalisms, the diffusion equation and its solutions. The Gaussian equation of the pollutant plume.	Lecture, explanation, debate	description, conversation,	6 Hours	
Dispersion models at the local scale. Dispersion parameters. Stability classes. The rise of the pollutant plume. Examples of models - comparison of the physical and chemical schemes implemented.	Lecture, explanation, debate	description, conversation,	5 Hours	
The effects of air pollution. Water and soil quality monitoring. Sources of pollution and types of water and soil pollutants. Physical, chemical and biological characteristics of water. Sampling and monitoring methods. The AirQ+ model for studying the health risk assessment of pollutants	Lecture, explanation, debate	description, conversation,	2 Hours	
International cooperation and scientific progress regarding research and reduction of environmental pollution.	Lecture, explanation, debate	description, conversation,	1 Hour	

- 1. Nitu, C, Krapivin, V.F., Soldatov, V.Y., Information technologies for the environmental investigations, Matrix Rom, Bucuresti, 2013.
- 2. Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics. From air pollution to climate change, John Willey and Sons Inc., USA, 2006.
- 3. Iorga G, 2016, Air Pollution Monitoring: A Case Study from Romania, in Air Quality Measurement and Modeling, Prof. Philip Sallis (Ed.), InTech, DOI: 10.5772/64919.
- 4. Iorga G., 2021,) "Air pollution and environmental policies, EU and Romania: where we stand, what the data reveals, what should be done in the future?", Book Chapter (23 pg) in Todor, A. and Helepciuc, F.E. (Eds.) "Europeanization of Environmental Policies and their Limitations: Capacity Building", Springer Nature Switzerland AG, Cham., ISBN 978-3-030-68585-0, https://doi.org/10.1007/978-3-030-68586-7_4.
- 5. Colls, J., Air pollution, 2nd Ed, Taylor § Francis e-Library, 2003.
- 6. Cheremisinoff, N., P., Handbook of air pollution prevention and control, Elsevier, MA, USA, 2002
- 7. Jacobson, M. Z., Atmospheric pollution: history, science and regulation, Cambridge Univ. Press, Cambridge UK, 2002
- 8. Jacobson, M. Z., Fundamentals of atmospheric modelling, 2nd Ed., Cambridge Univ. Press, Cambridge UK, 2005
- 9. Hernandez-Soriano, M.C.(Ed.), Environmental Risk Assessment of Soil Contamination, Intech, 2014.
- 10. Talpos, S., Borşan, D.H., Fizica stratului limita şi poluarea aerului, Ed. Univ. Buc., Bucuresti, 1997.
- 11. Various web sites of dedicated research platforms and scientific (original research or review) papers indicated by the professor during the lectures.

7.3 Practicals	Teaching techniques	Observations
Air sampling methods. Determination of pollutant concentrations using gas detectors and samplers for material particles PM10, PM2.5, PM4, PM1, CO, SO2, NOx, O3 gases.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	4 Hours
Analysis of observations on pollutants and meteorological parameters over a short and long period of time (calculation of daily, monthly and annual averages and associated standard deviations, pollutant correlations - meteorological variables, graphical representations and their interpretation). Chemometeogram. Interpretation of results.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	3 Hours
Obtaining the trajectories of air masses in a given place in Romania and Europe for a time interval of up to 3 days with dedicated software, accessible via the internet.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	4 Hours
Determining the height of the atmospheric boundary layer/mixing layer with the HYSPLIT model and with the help of the ceilometer. Comparison with BLH values from ERA5 reanalysis database of ECMWF.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	4 Hours
Modeling the dispersion of pollutants in the atmosphere with dispersion models in various conditions of atmospheric stability/instability (simple Gaussian model, HYSPLIT, FLEXPART, etc.). Sensitivity studies regarding the input parameters of the models. Interpretation of results. Experimental and modeling studies of the deposition of fine particles. Case studies: dry deposition and wet deposition of pollutants. Interpretation of results.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	10 Hours
Determination of some physical-chemical parameters (temperature, humidity, pH, permittivity, conductivity, concentrations of the main ionic species, depth and surface water flow) of some water samples: from precipitation, lake water, river water. Determination of some physical-chemical parameters of soil samples: temperature, humidity, permittivity, conductivity, pH, granulometry, concentrations of the main metals. Correlations with observations on precipitation and atmospheric deposition.	Guided practical activity: Experiment, Explanation, Conversation, Hypothesis testing	3 Hours

- 1. ***Climate of Romania, Coordinators: Sandu I., Pescaru, V.I., Poiana, I., Geicu, A., Candea, I., Tastea, D., Ed. Romanian Academy, Bucharest, Romania, 2008
- 2. Websites of Agencies Providing Methods and Guidelines Related to Environmental Monitoring: The U.S. Environmental Protection Agency (USEPA) USAWebsite: www.epa.gov/ The International Standards Organization (ISO) Switzerland Website: www.iso.ch/ The French Association for Normalization (FAN or AFN) France Website: www.afnor.fr/
- 3. Scientific articles published in main-stream journals and specific interactive applications, either accessible via the INTERNET, or usable stand-alone in the laboratory, together with explanatory notes/user manuals of the equipment used (available in the laboratory).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the particular importance of the discipline for applications using modern technology, the leader of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is according to the requirements for employment in research institutes in atmospheric physics working groups and in education.

• The discipline meets the current requirements of development and evolution on a national and international level of higher education in the field of environmental sciences. The curriculum of the discipline is adapted to the level of knowledge and the current requirements of scientific research and technological activities, being correlated with similar study programs from European universities that apply the Bologna system. Master's students will have the necessary work skills to approach an interdisciplinary study in environmental sciences. The skills acquired by mastering the subjects covered in this course ensure an easier integration of graduates in mixed work groups. The master's students are provided with adequate competences with the needs of the current qualifications, a scientific and technical training corresponding to the master's level, which will allow them to be quickly inserted on the labor market after graduation (the fields of activity targeted are multiple, the possible employers being both from the educational area, research and development area, as well as from the industrial field, but also have the possibility of continuing studies through doctoral programs.

METHODOLOGICAL REMARKS • At each course session, the student will receive material containing schemes/diagrams, examples, stages of calculation procedures that will be explained in detail by the professor in his lecture. The interactive professor-student dialogue will represent the assurance that the students have clarified the concepts addressed. • For each topic addressed in the laboratory, the students will work as much as possible in groups of a maximum of two, under the direct guidance of the professor. The professor checks, interprets and discusses the results with each work subgroup separately, at the end of each work session. • The professor helps the students in preparing the material for the exam. Students can ask questions or discuss aspects addressed in the course or laboratory during the additional consultation hours, the schedule of which is made by mutual agreement between the professor and the student. • Attendance at lectures and practical activities is an essential condition for the good performance of the entire educational activity, so it is recommended to students to attend all classes. The material required for the exam will be presented, discussed in classes and laboratories/seminars. The wrong information about the discussions at the course/seminar/laboratory or the lack of it, the lack of materials necessary for the preparation for knowledge verifications and exams cannot be invoked by absence from the course. The listed references include at least all the subjects covered in the course and laboratory/seminar, for deepening some subjects according to the interest of each student. • Students' participation during the lectures is necessary because a dialogue helps them to better understand the concepts taught, to use an appropriate vocabulary, it creates the possibility of maintaining an interactive dialogue, as well as integration in the academic conduct. For an active presence in the course and laboratory, students are asked to review the material presented in the previous courses and laboratories. By participating in this course, the student agrees to accept the code of academic conduct presented in the University Charter, the Code of Ethics and the Regulation regarding the professional activity of students. The code prohibits students from copying and other forms of exam cheating, plagiarizing papers, presenting fraudulent documents and forging signatures.

9. Assessment

> 1 IDD CDD III CII C						
Activity type	Assessment criteria	Assessment methods	Weight în			
			final mark			

Lecture	- The clarity, coherence and the precision of the	Written exam and oral	50%
	reasoning of an answer;	assessment	
	- Correct use of concepts, laws, models, formulas		
	and relationships;		
	- The ability to exemplify;		
Tutorial	- Completing laboratory assignments with an	Oral examination	50%
	active attitude;		
	- Knowledge and use of experimental techniques;		
	- Good quality of the interpretation of the results.		
Minimal	Attendance: attendance at a minimum of 50% of the	number of course hours and mandat	ory attendance
requirements	at all laboratory/seminar sessions.		
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lector Dr. Gabriela Iorga Lector Dr. Gabriela Iorga

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.103.2 Simulation and modelling of ecological polymeric materials

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Simulation and modelling of ecological polymeric materials		
2.2. Teacher	Conf. Dr. Cătălin Berlic		
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7.Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	60
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework					29
Tutorat				0	
Other activities					0
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

I rerequisites	(II necessary)
4.1. curriculum	Real and complex analysis, Physical data processing and numerical methods, Thermodynamics
	and statistical physics
4.2. competences	Good level of understanding of thermodynamics and statistical physics. Notions of mathematical
	analysis. Ability to use the computer.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (Computer, video projector, internet connection);
	Course notes; Recommended bibliography
5.2. for tutorials/practicals	Laboratory with the equipment necessary to carry out practical work: computer, video
	projector, software packages, internet connection. Seminar room

Knowledge	R3. The student/graduate knows the theoretical and practical concepts regarding the properties
	and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or
	porous materials) for their application in environmental monitoring and remediation processes.
	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R8. The student/graduate knows the computer tools and specialized programs used in data analysis
	and computational simulation.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.

Skills	R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact. R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials. R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the
	general public. Is able to synthesize information in a coherent and accessible manner.
Responsibility and autonomy	R3. The student/graduate has the ability to plan and implement complex projects in the field of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce environmental impact, effectively disseminating the results in the scientific community. R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics. R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities. R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Introduction. Overview of ecological polymers and their	Systematic exposition –	2 Hours
significance. The role of computer simulation in polymer	lecture, demonstration,	
science, particularly in the field of ecological polymers. Types	discussions, case studies.	
of problems addressed by simulation. Modeling techniques.	Examples	
Algorithms. Limitations of computer simulations. Computer		
simulation and modeling as a tool for investigating the behavior		
of ecological polymers.		
2. Boundary conditions. Solving problems related to computing	Systematic exposition -	2 Hours
system memory and runtime. Free boundary conditions.	lecture. Case studies.	
Constrained boundary conditions. Periodic boundary conditions.	Examples	
Handling boundaries in simulations.		
3. Interaction potentials used in the simulation and modeling	Systematic exposition -	4 Hours
of ecological polymers. The Hamiltonian of a system of	lecture. Examples.	
particles. Types of interaction potentials between particles: hard		
sphere potential, potential well, Lennard-Jones potential, Morse		
potential. Use of reduced measurement units.		
The link between computer simulations, statistical physics and	Systematic exposition -	2 Hours
polymer physics. The types of simulations that can be performed	lecture. Examples.	
using usual statistical ensembles: Monte Carlo simulations		
and molecular dynamics simulations. Truncation of interaction		
potentials. Determining the quantities of interest of polymers as		
averages over statistical ensembles. Statistical fluctuations		

5. Organization of a simulation program in polymer physics. The building blocks. Initialization of the program and the need to equilibrate the system. Special problems related to the initialization of a molecular dynamics simulation. Error estimation. Correction of the results. Treatment of long-distance interaction forces. Data analysis. Improvement proposals of the algorithms used for the modeling of environmentally friendly polymers.	Systematic exposition - lecture. Examples.	2 Hours
6. Monte Carlo methods. Monte Carlo integration. Generating random numbers and testing random number generators. Metropolis method. The basic algorithm of a Monte Carlo simulation.	Systematic exposition - lecture. Examples.	4 Hours
7. Lattice models used in the physics of ecological polymers. Streamlining Monte Carlo simulations by using lattice methods. Limitations of the lattice methods. The basic algorithm of a Monte Carlo simulation in the lattice case for polymer molecules. The random walk problem. Diffusion. Application to the diffusion of pollutants. Surfactants. Determination of mean square end-to-end distance and radius of gyration.	Systematic exposition - lecture. Examples.	4 Hours
8. Specific algorithms for the simulation of polymeric chains: reptation, bond length fluctuation, the generalized Verdier-Stockmayer algorithm and the pivot algorithm. The bond length fluctuation method. Determination of mean square stretching and radius of gyration in the case of linear polymers. Simulation of comb-shaped and star-shaped polymers. Their role as biosensors.	Systematic exposition - lecture. Examples	4 Hours
9. Continuous models. Algorithms specific to continuous models. Monte Carlo simulations of polymers in NVT and NPT ensembles. The chain model with free joints. Pearl necklace model. The bead-spring model.	Systematic exposition - lecture. Examples	4 Hours

- 1. D. Marenduzzo, "Introduction to Computational Polymer Physics", Cambridge University Press, 2020;
- 2. D. Frenkel, B. Smit, "Understanding Molecular Simulations. From Algorithm to Applications.", Academic Press, New York, 2002;
- 3. M.P. Allen, D.J. Tildesley, "Computer Simulation of Liquids", Oxford University Press, 1989;
- 4. D. P. Landau, K. Binder, "A Guide to Monte Carlo Simulations in Statistical Physics", Cambridge University Press, 2000;
- 5. P. Pasini, C. Zannoni, S. Žumer (Eds.), Computer Simulations of Liquid Crystals and Polymers, Kluver Academic Publishers, Dordrecht (2005).

7.3 Practicals	Teaching techniques	Observations
1. Installing Python, Jupyter or Visual Studio Code;	Guided practical work	2 Hours
Collaboratory. Writing and running first Python script.		
2. Introduction to Python Programming I. Python syntax and	Guided practical work	2 Hours
structure. Variables, basic data types (int, float, str, bool).		
Simple input and output. Arithmetic operations. Writing basic		
Python scripts: variables and simple expressions, calculations and		
printing.		
3. Introduction to Python Programming II. Lists, tuples, and	Guided practical work	4 Hours
dictionaries. Conditional statements (if/else). Loops (for, while).		
Functions: definition, calling, parameters. Writing Python		
scripts: Creating and manipulating lists. Writing loops for		
repetitive calculations. Defining and calling simple functions.		
4. Introduction to Python Programming III and Scientific Python.	Guided practical work	2 Hours
Introduction to NumPy arrays. Basic array operations. Simple		
data visualization with Matplotlib. Reading and writing files.		

5. Python Programming IV: Modular Programming, Logic, and Plotting. Structuring code using functions and modules. Controlling program logic. Handling data sequences. Visualizing data clearly and effectively.	Guided practical work	2 Hours
6. Monte Carlo estimation of pi using uniform random sampling. Stochastic techniques for estimating definite integrals. Estimate area under irregular shapes. Importance Sampling	Guided practical work	4 Hours
7. Simulation of the random walk of a particle in a 3D cubic lattice with free and periodic boundaries. Simulation of a simple polymer chain on a lattice with free and periodic boundaries. Self Avoiding Random Walk v.s. Simple Random Walk for a polymeric chain. Calculation of mean square end-to-end distance and radius of gyration.	Guided practical work	4 Hours
8. Simulation of a linear chain where bond lengths are allowed to fluctuate within a range. Pivot algorithm for conformation updates. Structural analysis: end-to-end distance and radius of gyration. Generate and visualize comb-shaped and star-shaped polymers.	Guided practical work	4 Hours
9. Free joint chain model. Simulation of a polymer chain using the pearl-necklace model. Monte Carlo simulation of the beadspring polymer model	Guided practical work	4 Hours

- 1. D. Frenkel, B. Smit, "Understanding Molecular Simulations. From Algorithm to Applications.", Academic Press, New York, 2002;
- 2. M.P. Allen, D.J. Tildesley, "Computer Simulation of Liquids", Oxford University Press, 1989;
- 3. M. Newman, "Computational Physics with Python", Cambridge University Press, 2023 (2nd edition).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

9. Assessment			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
_			
Lecture	- Knowledge of fundamental concepts in computer	1. Mid-term examination.	70%
	simulations of polymers;	Theoretical knowledge	
	- Accurate acquisition and understanding of the	checking-oral exam. 35%	
	topics covered in the course;	2. Final examination. Oral	
	- Demonstration of theoretical concepts using	theoretical knowledge exam.	
	correct computational formulas;	35%	
	- Clarity, coherence, and conciseness of the		
	presentation;		
	- Correct use of the studied physical models,		
	formulas, and computational relationships;		
	- Ability to provide relevant examples;		
	- Ability to apply acquired knowledge to solve		
	practical problems.		

Practical	 Knowledge and correct use of specific programming techniques Data processing and analysis abilities; Writing short pieces of code related to algorithms and models. 	Oral examination	30%
Minimal requirements for passing the exam	Correct exposition of a theoretical subject. A minimum grade of 5 must be obtained in each component of the evaluation. Attendance: at least 50% of the course hours and mandatory attendance at all lab sessions. At least 50% achievement in each of the criteria that determine the final grade.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic Conf. Dr. Cătălin Berlic

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.104.1 Ecological (friendly enviro) polymer materials

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Ecological (friendly enviro) polymer materials
2.2. Teacher	Lector. Dr. Eduard Gâtin
2.3. Tutorials/Practicals instructor(s)	Lector. Dr. Eduard Gâtin
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7.Classification DA

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography			49		
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework			24		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			97		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

· · · · · · · · · · · · · · · · · · ·	
4.1. curriculum	Mechanics, Thermodynamics and statistical physics, Physical chemistry.
4.2. competences	Good level of understanding of mechanics, statistical physics and thermodynamics. The ability to
	use laboratory equipment correctly.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (Computer, video projector). Course notes.	
	Recommended bibliography.	
5.2. for tutorials/practicals	Laboratory with the equipment necessary to carry out practical work Computer, Video	
	projector, software packages for data analysis and processing. Internet connection	

Knowledge	R3. The student/graduate knows the theoretical and practical concepts regarding the properties
	and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or
	porous materials) for their application in environmental monitoring and remediation processes.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.

Skills R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests. R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner. Responsibility R3. The student/graduate has the ability to plan and implement complex projects in the field and autonomy of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce environmental impact, effectively disseminating the results in the scientific community. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions. R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Introduction. Definition of polymers. Macromolecular	Systematic exposition -	2 Hours
systems. Physical-chemical and structural peculiarities of	lecture. Case studies	
polymers.	Examples	
2. Classification of macromolecular compounds. Carbocatene	Systematic exposition -	4 Hours
organic polymers. Saturated hydrocarbons and their derivatives:	lecture. Case studies	
polyalcohols, polyacids, polyethers, polyesters. Unsaturated	Examples	
hydrocarbons and their derivatives. Heterochain organic		
polymers: with oxygen, with nitrogen, with sulfur in the chain.		
3. Average molecular masses of polymers. Macromolecular size	Systematic exposition -	2 Hours
and polydispersity. Average molecular masses. Distribution of	lecture. Case studies	
molecular masses. Distribution functions of molecular masses.	Examples	
4. Synthesis of macromolecules. Theoretical principles of	Systematic exposition -	2 Hours
polymer production processes. Polymerization. The fundamental	lecture. Case studies	
characteristics of radical chain polymerization. The reaction	Examples	
mechanism. Reaction kinetics.		
5.Configurational structure of polymers. The regularity	Systematic exposition -	2 Hours
of the structure of macromolecular chains. Geometric	lecture. Case studies	
stereoisomerism. Optical stereoisomerism. Methods of studying	Examples	
the stereoregularity of polymers. Determining the structure of		
polymers. Spectroscopic methods (Raman).		
6. Viscometry of diluted macromolecular solutions. Polymers	Systematic exposition -	2 Hours
in solution. Viscometric procedures and methods. Physical-	lecture. Case studies	
structural peculiarities revealed in the viscometry of dilute	Examples	
solutions of polymers.		

References:

- 1. S. M. R., S. Siengchin, M. Jawaid, "Handbook of Bioplastics and Biodegradable Polymers: Properties, Processing and Applications", Wiley–VCH, 2022
- 2. S. Kabasci, "Bio-Based Plastics: Materials and Applications", Wiley, 2020
- 3. Inamudin, S. Thomas, R.K. Mishra, A.M. Asiri, (Editors), "Sustainable Polymer Composites and Nanocomposites:, Springer 2021

7.3 Practicals	Teaching techniques	Observations
Polymer structure identification: FT-IR spectroscopy, Raman	Guided practical work	2 Hours
spectroscopy, SEM.		
Phase transitions: thermo differential analysis, DSC, TG	Guided practical work	2 Hours
UV photopolymerization. UV influence on the properties of the	Guided practical work	2 Hours
obtained composite.		
The viscosity of polymer solutions. Determination of viscosity	Guided practical work	2 Hours
coefficient.		
Characterization of dental composite resins (biodegradable).	Guided practical work	2 Hours
Determination of "degree of conversion".		
Determination of the concentration of some polymer solutions	Guided practical work	2 Hours
with the help of the refractometer.		
Determination of the density of some polymer solutions with the	Guided practical work	2 Hours
precision pycnometer. Chemical degradation.		

- 1. M. S. Chauhan, "Laboratory Manual for Green Chemistry: Principles and Applications in Polymer Science", Narosa Publishing, 2021
- 2. D. Campbell, "Polymer Characterization: Physical Techniques", CRC Press, 2020

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity, coherence, and conciseness of the presentation; Ability to provide relevant examples; Ability to apply acquired knowledge to solve practical problems. 	Oral examination	70%
Practical	Application of specific solution methods for the given problem	Continuos evaluation	30%
Minimal requirements for passing the exam	Correct exposition of a theoretical subject. A minimum grade of 5 must be obtained in each component of the evaluation. Attendance: at least 50% of the course hours and mandatory attendance at all lab sessions.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lector. Dr. Eduard Gâtin Lector. Dr. Eduard Gâtin

Date of approval Head of department name and signature

Academic year 2025/2026

DO.104.2 Pollution with plastic materials and waste management

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Pollution with plastic materials and waste management
2.2. Teacher	Lector. Dr. Eduard Gâtin
2.3. Tutorials/Practicals instructor(s)	Lector. Dr. Eduard Gâtin
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DA

3. Total estimated time

5. Total estimated time					
3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bib	liography	49
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework				24	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				97	
3.8. Total hours per semester			125		
3.9. ECTS				5	

4. Prerequisites (if necessary)

	`	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R3. The student/graduate knows the theoretical and practical concepts regarding the properties and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or porous materials) for their application in environmental monitoring and remediation processes. R6. The student/graduate understands the mechanisms of pollutant transport and transformation, the sources and impact of plastic and radioactive materials, the functioning of green energy systems, as well as the methodological framework for environmental and energy audits.
Skills	R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact. R6. The student/graduate can implement methods for analyzing the impact of pollutants and the life cycle of materials, understand the transport and transformation processes of substances in the environment, and systematically use audit techniques and strategies for sustainable resource and waste management.

Res	ponsibility
and	autonomy

R3. The student/graduate has the ability to plan and implement complex projects in the field of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce environmental impact, effectively disseminating the results in the scientific community.

R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting audit results and substantiating decisions regarding energy and ecological sustainability.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Introduction to Plastic Pollution. Understand global plastic	Systematic exposition -	2 Hours
production, usage trends, and the concept of plastic as a persistent	lecture. Examples	
pollutant.		
2. Types of Plastics and Their Environmental Behavior. Classify	Systematic exposition -	2 Hours
plastics (PE, PET, PVC, etc.) and discuss their physical/chemical	lecture. Examples	
properties and degradation in various environments.		
3. Sources and Pathways of Plastic Pollution. Identify primary	Systematic exposition -	2 Hours
vs. secondary microplastics, land-based vs. marine sources, and	lecture. Examples	
atmospheric pathways.		
4. Environmental and Health Impacts of Plastic Waste. Analyze	Systematic exposition -	2 Hours
how plastics affect terrestrial and aquatic ecosystems, and human	lecture. Examples	
health via ingestion, inhalation, and contamination.		
5. Microplastics and Nanoplastics. Define, classify, and explore	Systematic exposition -	2 Hours
the formation, detection methods, and risks associated with	lecture. Examples	
micro- and nanoplastics.		
6. Plastic Recycling Technologies. Mechanical, chemical, and	Systematic exposition -	2 Hours
biological recycling; discuss pyrolysis, enzymatic degradation,	lecture. Examples	
and sorting challenges.		
7. Waste Management Systems. Collection, sorting, landfill	Systematic exposition -	2 Hours
management, incineration, and informal waste sectors.	lecture. Examples	

References:

- 1. A. Andrady, "Plastics and the Environment", Wiley, 2003
- 2. S.J. Morath, "Our Plastic Problem and How to Solve It", Cambridge University Press, 2021
- 3. T. M. Letcher, "Plastic Waste and Recycling", Elsevier, 2020

7.3 Practicals	Teaching techniques	Observations
Identification and Classification of Plastic Waste: Burn test and	Guided practical work	4 Hours
density test, FT-IR spectroscopy, Raman spectroscopy, SEM.		
Microplastic Extraction from Water Samples. Filtration of water	Guided practical work	4 Hours
samples. Visual inspection under microscope.		
Soil Sampling and Microplastic Separation. Soil drying and	Guided practical work	4 Hours
sieving. Saline solution (NaCl or ZnCl2) density floatation.		
Microscopy of recovered particles		
Plastic Waste Audit and Mitigation Plan. Audit plastic waste from	Guided practical work	2 Hours
class/lab. Propose changes to reduce, reuse, or substitute		

References:

- 1. F. Regan, B. Gruber, "Environmental Analytical Chemistry: Monitoring and Management of Contaminants", Wiley, 2023
- 2. J. Lead, "Environmental Sampling and Analysis for Plastics and Microplastics", Elsevier, 2024
- 3. H. Md. Anawar, "Sustainable Waste Management: Policies, Practices, and Technologies", Springer 2022

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark	
Lecture	 Clarity, coherence, and conciseness of the presentation; Ability to provide relevant examples; Ability to apply acquired knowledge to solve practical problems. Application of specific solution methods for the given problem 	Oral examination	70%	
Practical	Application of specific solution methods for the given problem	continuos evaluation	30%	
Minimal	Correct exposition of a theoretical subject.			
requirements	A minimum grade of 5 must be obtained in each component of the evaluation.			
for passing the exam	Attendance: at least 50% of the course hours and mandatory attendance at all lab sessions.			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lector. Dr. Eduard Gâtin Lector. Dr. Eduard Gâtin

Date of approval Head of department

name and signature

Academic year 2025/2026 DO.105.1 Polymer degradation methods

1. Study program

v i 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Polymer degradation methods			
2.2. Teacher	Prof. Dr. Valentin Barna			
2.3. Tutorials/Practicals instructor(s)	Prof. Dr. Valentin Barna			
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7.Classification DS			

3. Total estimated time

3.1. Hours per week	1	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
	7		_	9	
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bit	oliography	60
Research in library, study of electronic resources, field research				30	
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

	` ' '		
4.1. curriculum	Thermodynamics and statistical physics, Optics, Atom and molecule physics.		
4.2. competences	Good level of understanding of the knowledge of thermodynamics and statistical physics. Notions		
	of spectroscopy and atomic and nuclear physics. The ability to use correctly the laboratory		
	equipment		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (Computer, video projector, internet connection);
	Course notes; Recommended bibliography
5.2. for tutorials/practicals	Laboratory with the equipment necessary to carry out practical work: computer, video
	projector, software packages, internet connection. Seminar room.

Knowledge	R3. The student/graduate knows the theoretical and practical concepts regarding the properties
	and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or
	porous materials) for their application in environmental monitoring and remediation processes.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.

Skills	R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact. R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests.
Responsibility and autonomy	R3. The student/graduate has the ability to plan and implement complex projects in the field of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce environmental impact, effectively disseminating the results in the scientific community. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions.

7. Contents

7. Contents 7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction to Polymer Degradation. Definitions, degradation vs. aging, overview of mechanisms.	Systematic exposition - lecture. Examples.	2 Hours
Chemical transformations of polymers. Macromolecular reactions. Reactions of functional groups of polymers. Degradation of polymers. Durability of polymer materials.	Systematic exposition - lecture. Examples.	4 Hours
Methods of chemical degradation of polymers. Theoretical principles of polymer degradation processes. Reaction mechanism and kinetics. Protolytic degradation. Oxidative degradation.	Systematic exposition - lecture. Examples.	4 Hours
Methods of protecting polymers against degradation under the action of chemical factors. Methods of protecting polymers against degradation under the action of chemical factors.	Systematic exposition - lecture. Examples.	2 Hours
Degradation of polymers under the action of physical factors. Degradation under the influence of light. Degradation under the action of high-energy radiation. Radio-oxidation. Thermal degradation of polymers. Aging of polymers.	Systematic exposition - lecture. Examples.	4 Hours
Methods of protecting polymers against degradation under the action of physical factors.	Systematic exposition - lecture. Examples.	2 Hours
Degradation of polymers under the action of biological factors. Biochemistry of polymer degradation processes. Biodegradable polymers. Uses of biodegradable polymers. Biomaterials.	Systematic exposition - lecture. Examples.	4 Hours
Methods of investigation and diagnosis of polymer degradation. Mechanical methods. Mechanical testing of polymers. The hardness of polymers.	Systematic exposition - lecture. Examples.	4 Hours
Spectroscopic methods of investigation. Laboratory aging of polymer samples.	Systematic exposition - lecture. Examples.	2 Hours

References:

- 1. S. H. Hamid, "Handbook of Polymer Degradation", 2-nd Edition, CRC Press, 2020
- 2. M. Kutz, "Environmental Degradation of Materials", Wiley, 2021
- 3. W. Bremser, "Characterization of Polymer Degradation", Wiley, 2022
- 4. B. Baskar, A. Pandey, "Biodegradable Polymers in the Circular Plastics Economy", CRC Press, 2023

7.3 Practicals	Teaching techniques	Observations
FTIR Characterization of Degraded Polymers	Guided practical work	4 Hours
Phase transitions: thermodifferential analysis, DSC, TG	Guided practical work	4 Hours
Thermomechanical analysis	Guided practical work	4 Hours
Oxidative Degradation and Antioxidant Effectiveness	Guided practical work	2 Hours

UV Aging and Photodegradation	Guided practical work	6 Hours
Hydrolytic Degradation of Polyesters	Guided practical work	2 Hours
Biodegradation in Soil or Compost (Long-Term Setup)	Guided practical work	6 Hours

- 1. F. Regan, B. Gruber, "Environmental Analytical Chemistry: Monitoring and Management of Contaminants", Wiley, 2023
- 2. J. D. Menczel, R. B. Prime, "Thermal Analysis of Polymers: Fundamentals and Applications", 2-nd Edition, Wiley, 2020
- 3. T. R. Crompton, "FTIR Spectroscopy in Polymer Analysis", Smithers Rapra, 2021

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

9. Assessme						
Activity type	Assessment criteria	Assessment methods	Weight în			
			final mark			
Lecture	 Clarity, coherence, and conciseness of the presentation; Ability to provide relevant examples; Ability to apply acquired knowledge to solve practical problems. Application of specific solution methods for the given problem 	1. Mid-term examination. Theoretical knowledge checking-oral exam. 35% 2. Final examination. Oral theoretical knowledge exam. 35%	70%			
Practical	Application of specific solution methods for the given problem		30%			
Minimal	Correct exposition of a theoretical subject.					
requirements	A minimum grade of 5 must be obtained in each component of the evaluation.					
for passing	Attendance: at least 50% of the course hours and mandatory attendance at all lab sessions.					
the exam						

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. Dr. Valentin Barna Prof. Dr. Valentin Barna

Date of approval Head of department name and signature

Academic year 2025/2026 DO.105.2 Renewable energy sources

1. Study program

VI	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Renewable energy sources		
2.2. Teacher	Conf.Dr. Anca Dumitru		
2.3. Tutorials/Practicals instructor(s)	Conf.Dr Anca Dumitru		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DS		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography 60					60
Research in library, study of electronic resources, field research				30	
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			119		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

	1 1	() · · · · · · · · · · · · · · · · · ·
4.1. curriculum Basic knowledge of Physics, Mar		Basic knowledge of Physics, Mathematics and Chemistry
	4.2. competences	use of software packages for data analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom equipped with multimedia devices	
5.2. for tutorials/practicals	Set of practical work illustrating the topics covered in the course; Consumables;	
	Computers and software for data analysis	

Knowledge	R2. The student/graduate knows the natural and anthropogenic factors that determine climate
	variability and change, methods for monitoring and modeling environmental parameters, as well
	as their effects on the environment and society.
	R7. The student/graduate knows the principles of operation and use of measurement, analysis and
	testing equipment used in environmental physics and the characterization of ecological materials,
	including tools specific to environmental analysis.
	R8. The student/graduate knows the computer tools and specialized programs used in data analysis
	and computational simulation.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.

Skills

- R2. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system.
- R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests.
- R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials.
- R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner.

Responsibility and autonomy

- R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary.
- R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions.
- R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.
- R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductive information. Classification of energy sources. Non-	Lecture. Case study	6 Hours
renewable energy sources. Renewable energy sources. Climate	presentations. Discussions	
change and energy efficiency objectives. The energy policies at		
the European Union and at the national level		
Bioenergy or Biomass. Methods of energy conversion from	Lecture. Case study	2 Hours
biomass. Biomass fuels. Energy from waste recycling. The	presentations. Discussions	
advantages of biomass energy		
Wind energy. Characteristics of wind energy systems. Wind	Lecture. Case study	2 Hours
power plants. The advantages and disadvantages of wind energy	presentations. Discussions	
Hydroenergy. Tide and wave power energy.	Lecture. Case study	2 Hours
	presentations. Discussions	
Geothermal energy. Geothermal systems. The principle of	Lecture. Case study	2 Hours
operation. Conversion of geothermal energy into thermal energy.	presentations. Discussions	
The advantages of using geothermal systems		
Solar energy. The principle of operation of solar energy systems.	Lecture. Case study	4 Hours
Solar - thermal conversion. Solar-electric conversion. The	presentations. Discussions	
advantages of using solar energy.		
Hydrogen economy. Production, storage and transport of	Lecture. Case study	2 Hours
hydrogen	presentations. Discussions	
Fuel cells: fuel cells with proton exchange membranes, alkaline	Lecture. Case study	4 Hours
fuel cells, solid oxide fuel cells.	presentations. Discussions	
Microbial fuel cells.	Lecture. Case study	2 Hours
	presentations. Discussions	
Future directions of renewable energy. Energy efficiency. Green	Lecture. Case study	2 Hours
energy.	presentations. Discussions	

References:		
7.3 Practicals	Teaching techniques	Observations
Presentation of the practical work. Training for laboratory work and safety	lecture	2 Hours
Solar Energy Experiments	guided practical activity	4 Hours
Wind Energy Experiments	guided practical activity	4 Hours
Start-up and operation of microbial fuel cells	guided practical activity	8 Hours
Energy from Hydrogen Experiments. Fue cells. Electrolizers	guided practical activity	6 Hours
Combination of solar energy with electrolysis	guided practical activity	4 Hours

Mark Z. Jacobson, No Miracles Needed, Cambridge University Press, 2023, https://doi.org/10.1017/9781009249553; M. Kanoglu, Y. A. Cengel, J. M. Cimbala, Fundamentals and Applications of Renewable Energy, ISBN: 9781260455304; Publication Date and Copyright: 2023, McGraw Hill; Energy Institute - Statistical Review of World Energy; Renewable energy science kit, www.horizoneducational.com; Anca Dumitru and Keith Scott, Microbial Electrochemical and Fuel Cells. Fundamentals and Applications, Edition: 1, Chapter: Anode Materials for microbial fuel cells, Publisher: Woodhead Publishing, Editors: Keith Scott, Eileen Hao Yu, 2016, Pages 117-152 https://doi.org/10.1016/B978-1-78242-375-1.00004-6

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

7. Assessin			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 coherence and clarity of exposition correct use of knowledge and terminology used in renewable energy source area ability to indicate/analyze specific examples 	oral examination	70%
Practical	- ability to use specific experimental methods/apparatus - ability to analyse and interpret the characterization data - ability to present and discuss the results	Examination of Lab reports	30%
Minimal	correct use of knowledge and terminology used in r	enewable energy source area	
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf.Dr. Anca Dumitru Conf.Dr Anca Dumitru

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.109.1 Radionuclides, environmental radioactivity and radioactive waste management

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Radionuclides, environmental radioactivity and radioactive waste			
	management			
2.2. Teacher	Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache			
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DA			

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study			,	
Learning by using one's own o	course notes	, manuals, lectur	e notes, bib	liography	72
Research in library, study of el	lectronic res	sources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework			36		
Tutorat					0
Other activities			0		
3.7. Total hours of individual study			144		
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

1	(
4.1. curriculum	Nuclear Physics, Mathematics, Equations of mathematical physics, Quantum physics, Statistica	
	physics. Numerical methods. Programming languages.	
4.2. competences	Programming languages for science. Software for processing of nuclear data and graphics.	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom equipped with multimedia devices
5.2. for tutorials/practicals	Set of practical work illustrating the topics covered in the course.

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R6. The student/graduate understands the mechanisms of pollutant transport and transformation,
	the sources and impact of plastic and radioactive materials, the functioning of green energy systems,
	as well as the methodological framework for environmental and energy audits.
	R8. The student/graduate knows the computer tools and specialized programs used in data analysis
	and computational simulation.

Skills	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R6. The student/graduate can implement methods for analyzing the impact of pollutants and the life cycle of materials, understand the transport and transformation processes of substances in the environment, and systematically use audit techniques and strategies for sustainable resource and waste management. R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials.
Responsibility and autonomy	R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics. R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting audit results and substantiating decisions regarding energy and ecological sustainability. R8. The student/graduate demonstrates autonomy in the exploitation and development of software
	solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Cosmic rays. Primary and secondary cosmic rays. Cosmogenic radionuclides. Production mechanisms and rates, example (C-14, H-3, Be-7 and other radionuclides). Applications	Systematic exposure - lecture. Examples.	4 Hours
Cosmogenic nuclides in situ, examples. Production mechanisms and rates (with or without erosion). Applications	Systematic exposure - lecture. Examples.	2 Hours
Natural decay series. Secular equilibrium, Applications.	Systematic exposure - lecture. Examples.	2 Hours
Natural radioactivity. Uranium. Thorium. Ra-266, Radon, Toron and their descendants. Distribution of radon and its descendants in the atmosphere. High natural background radiation areas. Contributions to the natural radioactive background	Systematic exposure - lecture. Examples.	3 Hours
Dating methods using radioactive isotopes (K-Ar, Rb-Sr, U-Pb methods, Pb-210 activity measurements in sediments). Applications	Systematic exposure - lecture. Examples.	3 Hours
Sources of exposure to ionising radiation. Radiotoxicity. Biokinetic models for the assay of internal doses due to the incorporation of radionuclides. Dose - response models used to evaluate the risk of exposure to ionising radiation. Applications	Systematic exposure - lecture. Examples.	2 Hours
The assessment of exposure to indoor radon. Potential alfa energy (PAE) and PAE concentration (PAEC). Radon / thoron equilibrium indoors; the equilibrium coefficient. Building materials as sources of radon. Radon attachment to the aerosols. Indoor radon measurements. Doses due to radon and descendants. Standards and regulations related to radon exposure. Applications	Systematic exposure - lecture. Examples.	2 Hours
Radioactive contamination of the environment. Sources of contamination. NORM and TENORM. Radioactive effluents. Methods for establishing the derived limits for radioactive effluents. Applications	Systematic exposure - lecture. Examples.	2 Hours

Nuclear and radiological accidents and incidents. The INIS scale.	Systematic exposure - lecture.	4 Hours
Models for the atmospheric dispersion of radioactive emissions.	Examples.	
Environmental contamination subsequent to the accidents and		
methods for environmental monitoring. Rules for the response		
to nuclear / radiological accidents. Examples: the Chernobil and		
Fukushima accidents. The radiological accident from Gôiania.		
applications		
Managament of radioactive waste. Categorising and	Systematic exposure - lecture.	4 Hours
characterisation of radioactive waste. Processing and storage of	Examples.	
radioactive waste. Orphan sources. Examples.		

- 1. G.Vladuca "Elemente de fizica nucleara", partea I, Ed.Univ.Buc., 1988.
- 2. G. Vladuca "Elemente de fizica nucleara", partea a II-a, Ed. Univ. Buc., 1990.
- 3. O. Sima, Note de curs Radioactivitatea mediului.
- 4. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear », Ed.Univ. Buc.1999.
- 5. V. Valcovic, Radioactivity in the environment, Elsevier, 2000.
- 6. M. Eisenbud, T. Gessel, Environmental radioactivity, Academic Press, 1997
- 7. M. L'Anunziata, Handbook of Radioactivty Analysis, Academic Press 2012
- 8. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), editiile din 1988, 1993, 1996, 2000, 2008, 2010 etc.; http://www.unscear.org/unscear/en/publications.html
- 9. V.Cuculeanu "Fizica si calculul reactorilor nucleari cu neutroni rapizi", Ed.Teh., Buc., 1982
- 10. Reveica Ion-Mihai, Radioactivitatea si circuitul izotopilor radioactivi in mediu, Ed. Univ.Buc., 1998.
- 11. O.Duliu, Aplicatiile radioatiilor nucleare, Ed.Univ.Buc., 1993.
- 12. C. Cosma, T. Jurcut, Radonul si mediul inconjurator, Editura Dacia, 1996

7.3 Practicals	Teaching techniques	Observations
Applications concerning the radioactive series and the secular equilibrium.		4 Hours
Gamma spectrometry with NaI(Tl) detectors. Gamma spectrometry analysis of a pitchblende sample		2 Hours
Study of self-absorption effects in thick radioactive samples		2 Hours
Determination of the density variation of samples by the transmission of beta radiation		2 Hours
Measurement of the half-life of 40K using a KCl sample		2 Hours
Data analysis to obtain isochronous curves in dating applications		2 Hours
The calculation of derived activity concentrations for water and air effluents.		2 Hours
Evaluation of radioactive contamination of the environment after a single emission incident using the Gaussian dispersion model.		4 Hours
Methods for finding and identifying an orphan source		2 Hours
Practical exercise of intervention in the case of a nuclear accident		4 Hours
Measurement of area contamination using low level alpha beta counting.		2 Hours

References:

- 1. G.Vladuca "Elemente de fizica nucleara", partea I, Ed.Univ.Buc., 1988.
- 2. G. Vladuca "Elemente de fizica nucleara", partea a II-a, Ed. Univ. Buc., 1990.
- 3. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear», Ed.Univ. Buc.1999.
- 4. O. Sima, Note de curs Radioactivitatea mediului.
- 5. Reveica Ion-Mihai, Radioactivitatea si circuitul izotopilor radioactivi in mediu, Ed. Univ.Buc., 1998.
- 6. O.Duliu, Aplicatiile radioatiilor nucleare, Ed.Univ.Buc., 1993.
- IAEA (www.iaea.org), IAEA Nuclear Data Section (www-nds.iaea.org): the nuclear data libraries RIPL and EXFOR.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Given the special importance of the discipline for applications in the field of nuclear physics (multiple applications in all fields, industry, medicine, agriculture, energy, etc.) in order to prepare the contents and choose the teaching/learning methods, the teachers of the discipline consulted the content of similar couses taught at universities abroad (Université de Bordeuaux, Université Paris-Sud, Université Catholique Louvain-la-Neuve, etc.). The content of the discipline is in accordance with the employment requirements in research institutes in the field of nuclear physics and nuclear reactors, at nuclear power plants and in higher education field (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în		
			final mark		
Lecture	- coherence and clarity of exposition - correct use of equations/mathematical	Oral examination	70%		
	methods/physical models and theories				
	- ability to indicate and analyze specific examples				
Tutorial			30%		
Minimal	Minimal requirements for passing the exam				
requirements	Correct understanding of the concepts and phenomena, the ability to work in a team and to obtain				
for passing	accurate numerical results on topics imposed.				
the exam					
	Requirements for mark 5 (10 points scale)				
	• Finalization of the tasks given during the practical activities.				
	• Correct exposure of the subjects indicated to obtain 5 at the final exam.				

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache Vasilache

Practicals/Tutorials/Project instructor(s), name and signature

Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache

Date of approval

Head of department
name and signature

15.07.2025

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.109.2 Modeling environmental and astrophysical processes

1. Study program

• • •	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Modeling environmental and astrophysical processes		
2.2. Teacher	Prof. dr. Mihai Dima		
2.3. Tutorials/Practicals instructor(s)	or(s) CS I dr. Mirel Birlan		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7.Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

1	
4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its
	structure and dynamics, as well as the exchanges of energy and matter in the climate system.
	R2. The student/graduate knows the natural and anthropogenic factors that determine climate
	variability and change, methods for monitoring and modeling environmental parameters, as well
	as their effects on the environment and society.
	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R8. The student/graduate knows the computer tools and specialized programs used in data analysis
	and computational simulation.
	R9. The student/graduate knows the terminology specific to the field of environmental physics and
	ecological materials, for the purpose of effective communication in professional environments and
	towards society.

Skills

- R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena.
- R2. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system.
- R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques.
- R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials.
- R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner.

Responsibility and autonomy

- R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community.
- R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary.
- R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.
- R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.
- R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers.

7. Contents

7.1 Lecture [chapters]	Teaching techniques		
Fundamentals of numerical forecasting models	Systematic	exposition -	4 Hours
	lecture.	Conversation.	
	Examples		
Parametrization schemes: cloud microphysics, convection and	Systematic	exposition -	4 Hours
surface processes	lecture.	Conversation.	
	Examples		
Data assimilation in numerical forecasting models	Systematic	exposition -	4 Hours
	lecture.	Conversation.	
	Examples		
Uncertainty and ensembles. Probabilistic forecasts	Systematic	exposition -	2 Hours
	lecture.	Conversation.	
	Examples		
Elements of fundamental astronomy: reference systems, orbital	Systematic	exposition -	2 Hours
elements, ephemeris	lecture.	Conversation.	
	Examples		

Time scales in astronomy; distance scales in astronomy	Systematic exposition - 2 Hours lecture. Conversation. Examples	
Astronomical instruments	Systematic exposition - 4 Hours lecture. Conversation. Examples	
Presentation of the solar system	Systematic exposition - 4 Hours lecture. Conversation. Examples	
Exoplanets: detection, dynamic analysis	Systematic exposition - 2 Hours lecture. Conversation. Examples	

Coiffier, J., FundamentalsCesare of Numerical Weather Prediction, Cambridge University Press, 2012. Barbieri, C., Bertini, I, Fundamentals of Astronomy, CRS Press. 2020.

7.3 Practicals	Teaching techniques	Observations
Calculation of finite-difference derivatives on a 1D grid	Guided practical activity	2 Hours
Bilinear interpolation of temperature between two-points networks	Guided practical activity	4 Hours
Comparing a numerical forecast with real observations: calculation of errors	Guided practical activity	4 Hours
Visualization of meteorological data (temperature, wind) from a NetCDF file	Guided practical activity	4 Hours
Presentation of the night sky, night observations	Guided practical activity	2 Hours
Studying the celestial sphere using the Stellarium program	Guided practical activity	4 Hours
Reduction of astronomical images. Obtaining astrometric data of	Guided practical activity	4 Hours
Presentation of astronomical instruments installed at the Astronomical Institute	Guided practical activity	4 Hours

References:

Coiffier, J., FundamentalsCesare of Numerical Weather Prediction, Cambridge University Press, 2012. Barbieri, C., Bertini, I, Fundamentals of Astronomy, CRS Press. 2020.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms competences and abilities which are important for an undergraduate student in the field of modern Physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates.

9. Assessment

9. Assessment				
Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	
Lecture	 coherence and clarity of exposition correct use of knowledge and terminology used in lectures ability to indicate/analyse specific examples correct use of equations/mathematical methods/physical models and 	Written examination	70%	
	theories			
Practical	- ability to analyse and interpret the data		30%	
	- ability to present and discuss the results			

Minimal		
requirements		
for passing		
the exam		

13.07.2025

Completion of 80% laboratory and mark 5 at the colloquium

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
Prof. dr. Mihai Dima CS I dr. Mirel Birlan

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.110.1 Statistical methods in Earth and Atmosphere Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Statistical methods in Earth and Atmosphere Physics		
2.2. Teacher	Conf. dr. Cristian Necula		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Cristian Necula		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DS		

3. Total estimated time

3. Iotai estimatea time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography					72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework			36		
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1 ourriculum	
4.1. Cullicululli	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied in modeling physico-chemical processes in the field of environmental physics, ecological materials and renewable energy. R12. The student/graduate uses fundamental and specialized notions to explain and interpret various concepts, situations, processes and projects.
Skills	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.

Res	ponsibility
and	autonomy

- R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.
- R12. The student/graduate solves specific requirements by identifying regularities, notions and concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
1. The aim of the course. R programming platform as medium for	Systematic exposition	4 Hours
statistical calculus and graphics. Install R, setup R for the present	- lecture. Heuristic	
lectures, working with R, installing additional packages.	conversation. Critical	
	analysis. Examples	
2. Statistics and probabilities. Discrete and continuous	Systematic exposition	4 Hours
praobability distributions. Mean, standard deviation, confidence	- lecture. Heuristic	
level for the mean, median. Quartile, percentile. Student-t test	conversation. Critical	
and F test.	analysis. Examples	
3. Correlation. Correlation coefficient, determination coefficient,	Systematic exposition	6 Hours
signification test and confidence levels for correlation coefficient,	- lecture. Heuristic	
influence of extreme values on the correlation coefficient.	conversation. Critical	
	analysis. Examples	
4. Linear regression. Parameters of straight line model.	Systematic exposition	6 Hours
Confidence levels for slope and intercept. Predictions for mean,	- lecture. Heuristic	
a single future observation etc. Multiple linear regression.	conversation. Critical	
Regressors identification. Non-linear regression.	analysis. Examples	
5. Cluster analysis. Data normalization. Hierarchical clusters.	Systematic exposition	4 Hours
K-mean clusters. Determination of optimal numar of clusters by	- lecture. Heuristic	
"silhouette" plot.	conversation. Critical	
	analysis. Examples	
6. techniques for dimensions reduction. Principal Component	Systematic exposition	4 Hours
Analysis. Redundant data. Principal components and loadings.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
References:	unarysis. Examples	<u> </u>

References:

7.3 Practicals	Teaching techniques	Observations
1. Generation of data using R. Working with R, plot and	Supervised practical activity	4 Hours
functions. Applications on synthetic data.		
2. Examples of probability distributions. Determination of mean,	Supervised practical activity	4 Hours
standard deviation, median, quartile and percentile, confidence		
intervals, etc. for real data. Student-t test and F test for real data.		
3. Determination of correlation coefficient for real data.	Supervised practical activity	4 Hours
Significance test and confidence interval for correlation		
coefficient. Influences of extrema on correlation using R.		
4. Linear regression with real data using R. Calculus for fitting	Supervised practical activity	6 Hours
parameters and their confidence intervals using R. Multiple linear		
regression and non-linear regression în R. Examples for synthetic		
and real data.		
5. Application of cluster analysis on real and synthetic data.	Supervised practical activity	6 Hours
6. Application of Principal component analysis on real and	Supervised practical activity	4 Hours
synthetic data.		

References:	

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	coherence and clarity of exposition appropriate use of environmental magnetism methods and concepts - ability to apply to specific examples		50%
Practical	Application of environmental magnetism methods on a given particular data - results interpretation		50%
Minimal requirements for passing the exam	Achieving a minimum grade of 5 in exam. Attendance: presence at a minimum of 50% of the claboratory sessions	course hours and mandatory attenda	ance at all

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Cristian Necula Conf. dr. Cristian Necula

Date of approval Head of department

name and signature

Academic year 2025/2026 DO.110.2 Time series analysis

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Time series analysis					
2.2. Teacher	Conf. dr. Cristian Necula					
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Cristian Necula					
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DS					

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes,	manuals, lectur	e notes, bibl	iography	72
Research in library, study of el	lectronic res	ources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework					
Tutorat					
Other activities					
3.7. Total hours of individual study					
3.8. Total hours per semester					
3.9. ECTS					

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, solid state physics
4.2. competences	Usage of specific software packages for data analysis and processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector, internet acces				
5.2. for tutorials/practicals	Laboratory	Laboratory equipped with specific devices related to environmental magnetism			
	investigations.				

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
	in modeling physico-chemical processes in the field of environmental physics, ecological materials
	and renewable energy.
	R8. The student/graduate knows the computer tools and specialized programs used in data analysis
	and computational simulation.
	R12. The student/graduate uses fundamental and specialized notions to explain and interpret
	various concepts, situations, processes and projects.

Skills	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques. R8. The student/graduate can use advanced modeling and simulation software to solve specific problems in environmental physics and the field of ecological materials. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.
Responsibility and autonomy	R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous
	scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.
	R8. The student/graduate demonstrates autonomy in the exploitation and development of software solutions, assuming responsibility for compliance with licensing models, code quality standards, and collaborative practices specific to software solution development and operation communities.
	R12. The student/graduate solves specific requirements by identifying regularities, notions and concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents 7.1 Lecture [chapters]

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Representation of a signal in frequency domain. Continuous Fourier Transform. Discrete Fourrier Transform. Amplitude, phase, frequency (period), for a signal. Trend and noise. Red noise and white noise.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
2. Trend and red noise effects in frequency domain. Methods for removing trend and noise. Frequency domain filtering of a signal. Time series analysis for irregularly samples time series. Lomb-Scargle Periodogram and CLEAN algorithm.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
3. Bivariate time series analysis. Frequency leakage, spectral windows. Cross-spectrum, coherency, phase difference between two signals.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
4. Non-stationary time series. Windowed Fourier Transform (Short Time Fourier Transform). Continuous and discrete Wavelet transform. Cross-spectrum, coherency, phase difference using continuous wavelet transform. Wavelet analysis for irregularly sampled time series.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
5. Maximal Overlap Discrete Wavelet Transform. Multiresolution analysis. Coherency and phase difference based on multiresolution analysis.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
6. Maximal Overlap Discrete Wavelet Packet Transform. Hilbert spectrum. Filtering using wavelet functions. Coherency and phase difference based on MODWPT.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours
7. Multiple and partial coherency and phase difference using wavelets.	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours

- 1. Robert H. Shumway, David S. Stoffer, 2011, Time Series Analysis and Its Applications, With R Examples, Third edition, Springer.
- 2. Olafsdottir, K. B., Schulz, M. and Mudelsee, M. (2016): REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series. Computers and Geosciences, 91, 11-18
- 3. Donald Percival, Andrew Walden, 2000, Wavelet Methods for Time Series Analysis, Cambridge University Press.
- 4. Stephane Malat, 2005, A wavelet tour of signal processing, Academic Press.
- 5. D. Heslop, M.J. Dekkers, 2002, Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation, Physics of the Earth and Planetary Interiors 130 (2002) 103–116
- 6. Foster Grant, 1996, Wavelets for period analysis of unevenly sampled time series, The astronomical journal, vol 112, no, 4.
- 7. BRANDON WHITCHER and PETER F. CRAIGMILE, MULTIVARIATE SPECTRAL ANALYSIS USING HILBERT WAVELET PAIRS, Int. J. Wavelets Multiresolut Inf. Process. 02, 567 (2004)
- 8. Brandon Whitcher, Peter F. Craigmile, Peter Brown, 2005, Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs, Signal Processing, Volume 85, Issue 11, November 2005, Pages 2065–2081
- 9. S. OLHEDE AND A. T. WALDEN, 2005, A generalized demodulation approach to time-frequency projections for multicomponent signals, Proc. R. Soc. A (2005) 461, 2159–2179.

7.3 Practicals	Teaching techniques	Observations
1. Generation of periodic signals with various amplitudes, frequencies and phases using Python, Matlab and R. Signal representation în frequency domain using Fourier transform. Periodogram determination. Processing of irregularly sampled natural time series using REDFIT-X.	Supervised practical activity	2 Hours
2. Removing trend. Estimation tehnique of the trend. Remiving noise. White noise and red noise. Welch method. Filtering în frequency domain. Application on synthetic and natural (real) signals.	Supervised practical activity	4 Hours
3. Bivariate signal analysis. Determination of cross-spectrum, coherency and phase differences on synthetic and natural signals. Processing of the irregularly sampled real signals. Results interpretation. Confidence levels.	Supervised practical activity	4 Hours
4. Stationary and non-stationary signals. Short time Fourier transform (windowed Fourier transform, Evolutionary spectrum) – spectrum. Applications on synthetic and real signals.	Supervised practical activity	4 Hours
5. Continuous wavelet spectrum. Estimation of cross-spectrum, coherency and phase diferences through continuous wavelet transform on natural and synthetic signals. Continuous wavelet spectrum for irregularly sampled time series: Weighted Wavelet Transform.	Supervised practical activity	4 Hours
6. Multiresolution analysis by Maximal Overlap Discrete Wavelet Transform. Spectrum interpretation. Coherency and phase difference. Aplications on natural signals. Results interpretation.	Supervised practical activity	4 Hours
7. Hilbert spectrum using Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). Coherency and phase difference through MODWPT. Filtering by MODWPT on natural signals. Multiple and partial coherency and phase difference using wavelets.	Supervised practical activity	6 Hours

- 1. Robert H. Shumway, David S. Stoffer, 2011, Time Series Analysis and Its Applications, With R Examples, Third edition, Springer.
- 2. Olafsdottir, K. B., Schulz, M. and Mudelsee, M. (2016): REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series. Computers and Geosciences, 91, 11-18
- 3. Donald Percival, Andrew Walden, 2000, Wavelet Methods for Time Series Analysis, Cambridge University Press.
- 4. Stephane Malat, 2005, A wavelet tour of signal processing, Academic Press.
- 5. D. Heslop, M.J. Dekkers, 2002, Spectral analysis of unevenly spaced climatic time series using CLEAN: signal recovery and derivation of significance levels using a Monte Carlo simulation, Physics of the Earth and Planetary Interiors 130 (2002) 103–116
- 6. Foster Grant, 1996, Wavelets for period analysis of unevenly sampled time series, The astronomical journal, vol 112, no, 4.
- 7. BRANDON WHITCHER and PETER F. CRAIGMILE, MULTIVARIATE SPECTRAL ANALYSIS USING HILBERT WAVELET PAIRS, Int. J. Wavelets Multiresolut Inf. Process. 02, 567 (2004)
- 8. Brandon Whitcher, Peter F. Craigmile, Peter Brown, 2005, Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs, Signal Processing, Volume 85, Issue 11, November 2005, Pages 2065–2081
- 9. S. OLHEDE AND A. T. WALDEN, 2005, A generalized demodulation approach to time-frequency projections for multicomponent signals, Proc. R. Soc. A (2005) 461, 2159–2179.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms/develops theoretical and practical competences and abilities which are important for a Master student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	coherence and clarity of exposition		50%
	appropriate use of environmental magnetism		
	methods and concepts		
	- ability to apply to specific examples		
Practical	Application of environmental magnetism methods		50%
	on a given particular data		
	- results interpretation		
Minimal	Achieving a minimum grade of 5 in exam.		
requirements	Attendance: presence at a minimum of 50% of the	he course hours and mandatory at	tendance at all
for passing	laboratory sessions.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Cristian Necula Conf. dr. Cristian Necula

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.204.1 Environmental magnetism / Magnetism cu aplicații în fizica mediului

1. Study program

v i o	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title Environmental magnetism / Magnetism cu aplicații în fizica mediului					
2.2. Teacher	Conf. dr. Cristian Necula				
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Cristian Necula				
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DS				

3. Total estimated time

or rotal estimated time							
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0		
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0		
Distribution of estimated time	for study						
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	42		
Research in library, study of electronic resources, field research							
Preparation for practicals/tutorials/projects/reports/homework							
Tutorat							
Other activities							
3.7. Total hours of individual study							
3.8. Total hours per semester							
3.9. ECTS					5		

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, solid state physics
4.2. competences	Usage of specific software packages for data analysis and processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector, iinternet acces						
5.2. for tutorials/practicals	Laboratory equipped with specific devices related to environmental magnetism						
	investigations such as: Princeton Measurements VSM (Vibrating Sample Magnetometer)						
	model 3900 Princeton Measurements AGM 2900 (Alternative Gradient Magnetometer)						
	Magnon International AF demagnetizer with ARM coil. LDA-3A, AGICO						
	with authomatic AF demagnetizer 9T Pulse magnetizer Magnetic Measurements.						
	Kappabridge MFK1-FA AGICO with three frequencies with high temperature furnace						
	and Low Temperature Cryostat Apparatus to monitor the variation of magnetic						
	susceptibility with temperatures between (-190-700C) Magnetic susceptibility meter						
	with multiple frrequencies (14 frequencies) SM100/105 (ZH Instruments) . Software						
	packages (open source or licensed) for FORC processing, magnetic susceptibility						
	variation with temperature, unmixing the IRM curves.						

Knowledge	R5. The student/graduate knows the physical processes that govern the internal structure of the Earth, the propagation of seismic waves, the analysis of gravitational and geomagnetic fields and their interaction with the environment. R7. The student/graduate knows the principles of operation and use of measurement, analysis and testing equipment used in environmental physics and the characterization of ecological materials, including tools specific to environmental analysis. R12. The student/graduate uses fundamental and specialized notions to explain and interpret various concepts, situations, processes and projects.
Skills	R5. The student/graduate can analyze seismic, magnetic and gravimetric data, using geophysical methods and theoretical models to characterize the structure and internal evolution of the planet. The student/graduate can apply scientific methods and critically interpret experimental data obtained in the laboratory. R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests. R12. The student/graduate applies fundamental and specialized knowledge and concepts to explain, present, identify and interpret processes in environmental physics and ecological materials, in concrete situations or within projects and programs specific to the field.
Responsibility and autonomy	R5. The student/graduate has the ability to plan and implement complex projects that integrate geophysical results in applied contexts, such as natural hazards or environmental monitoring, effectively communicating results within research teams and to decision-makers. R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions. R12. The student/graduate solves specific requirements by identifying regularities, notions and concepts specific to the field, demonstrating analysis and synthesis skills.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction in rock magnetism: diamagnetism, paramagnetism,	Systematic exposition	2 Hours
ferromagnetism.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Magnetic susceptibility. Magnetic hysteresis. Magnetic	Systematic exposition	2 Hours
parameters used in environmental magnetism.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Magnetic parameters used in environmental magnetism.	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
The main magnetic minerals responsible for natural magnetism.	Systematic exposition	2 Hours
Origin, transformation, properties.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Measuring the main magnetic parameters involved in	Systematic exposition	6 Hours
environmental magnetism.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	

Unmixing methods of magnetic parameters.	Systematic	exposition	4 Hours
	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Example	es	
Magnetoclimatology. Magnetism of terrestrial, marine and lake	Systematic	exposition	4 Hours
sediments. Milankovich cycles.	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Example	es	
Magnetic survey of environmental pollution. Soil and	Systematic	exposition	2 Hours
atmospheric pollution. Magnetic survey of traffic and industrial	- lecture.	Heuristic	
pollution.	conversation.	Critical	
	analysis. Example	es	
Archaeomagnetism	Systematic	exposition	2 Hours
	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Example	es	
Speleomagnetism	Systematic	exposition	2 Hours
	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Example	es	

- 1. Evans, M.E., Heller F., 2003, Environmental Magnetism, Academic Press, 317 pp
- 2. Maher, B., Thompson, R., 1999, Quaternary Climates, Environments and Magnetism, Cambridge University Press, 403pp.
- 3. Dunlop, D.J. and Ozdemir, O., 1997. Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge.
- 4. Tauxe, L., with contributions from: Subir K. Banerjee, Robert F. Butler and Rob van der Voo, 2018, Essentials of Paleomagnetism: Fifth Web Edition,

https://earthref.org/MagIC/books/Tauxe/Essentials/

5. Necula., C, 2017, Determinarea proprietăților magnetice ale rocilor pe baza histerezisului magnetic, Editura Ars Docendi

7.3 Practicals	Teaching techniques	Observations
Magnetic susceptibility measuring methods. Frequency	Supervised practical activity	2 Hours
dependent magnetic susceptibility.		
Measuring methods for magnetic hysteresis.	Supervised practical activity	2 Hours
Magnetic minerales determination through temperature	Communication and a still a st	2 11
Magnetic mineralogy determination through temperature variation of magnetic susceptibility	Supervised practical activity	2 Hours
Magnetic granulometry estimation using FORC (First Order	Supervised practical activity	2 Hours
Reversal Curves) and non-linear Preisach diagrams.		
Concentration estimation of single domain particles using ARM	Supervised practical activity	2 Hours
(Anhisteretic Remanent Magnetization) and IRM (Isothermal		
Remanent Magnetization) measurements,		
Unmixing magnetic parameters.	Supervised practical activity	2 Hours
Estimating the Grain size distribution of superparamagnetic	Supervised practical activity	2 Hours
particles using multiple frequencies magnetic susceptibility		
measurements.		

- 1. Evans, M.E., Heller F., 2003, Environmental Magnetism, Academic Press, 317 pp
- 2. Maher, B., Thompson, R., 1999, Quaternary Climates, Environments and Magnetism, Cambridge University Press, 403pp.
- 3. Dunlop, D.J. and Ozdemir, O., 1997. Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge.
- 4. Tauxe, L., with contributions from: Subir K. Banerjee, Robert F. Butler and Rob van der Voo, 2018, Essentials of Paleomagnetism: Fifth Web Edition,

https://earthref.org/MagIC/books/Tauxe/Essentials/

5. Necula., C, 2017, Determinarea proprietăților magnetice ale rocilor pe baza histerezisului magnetic, Editura Ars Docendi

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms/develops theoretical and practical competences and abilities which are important for a Master student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union

9. Assessment

9. Assessino									
Activity type	Assessment criteria	Assessment methods	Weight în						
			final mark						
Lecture	- coherence and clarity of exposition		50%						
	- appropriate use of environmental magnetism								
	methods and concepts								
	- ability to apply to specific examples								
Practical	- Application of environmental magnetism		50%						
	methods on a given particular data								
	- results interpretation								
Minimal	- Achieving a minimum grade of 5 in exam.								
requirements	- Attendance: presence at a minimum of 50% of t	- Attendance: presence at a minimum of 50% of the course hours and mandatory attendance at all							
for passing	laboratory sessions.								
the exam									

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Cristian Necula Conf. dr. Cristian Necula

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.204.2 Earth's geomagnetic and gravity fields / Câmpurile geomagnetic și gravitațional ale Pământului

1. Study program

V 1 C	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2. Course unit											
2.1. Course unit titl	e		Ea	rth's	geomagnetic	and	gravity f	ields /	Câmpurile	geomagnetic	şi
			gravitațional ale Pământului								
2.2. Teacher			Conf. dr. Cristian Necula								
2.3. Tutorials/Practi	icals	instructor(s)	Conf. dr. Cristian necula								
2.4 Year of study	2	2.5. Semester	1	2.6.	. Type of evalua	ation	examen	1 2.7.	Classification	n DS	

3. Total estimated time

5. Total estillated tille							
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0		
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0		
Distribution of estimated time	for study						
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	42		
Research in library, study of el	lectronic res	ources, field rese	earch		21		
Preparation for practicals/tutorials/projects/reports/homework							
Tutorat							
Other activities							
3.7. Total hours of individual s	study				83		
3.8. Total hours per semester					125		
3.9. ECTS					5		

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, solid state physics
4.2. competences	Usage of specific software packages for data analysis and processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector
5.2. for tutorials/practicals	Software packages (open source or licensed) to analyze gravitational and geomagnetic
	fields, on-line access to international database in geomagnetism, experiments in
	geomagnetism and gravitational field.

6. Learning outcomes

Knowledge	R5. The student/graduate knows the physical processes that govern the internal structure of the Earth, the propagation of seismic waves, the analysis of gravitational and geomagnetic fields and their interaction with the environment.
Skills	R5. The student/graduate can analyze seismic, magnetic and gravimetric data, using geophysical methods and theoretical models to characterize the structure and internal evolution of the planet. The student/graduate can apply scientific methods and critically interpret experimental data obtained in the laboratory.
Responsibility and autonomy	R5. The student/graduate has the ability to plan and implement complex projects that integrate geophysical results in applied contexts, such as natural hazards or environmental monitoring, effectively communicating results within research teams and to decision-makers.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations		
1. Historical introduction. Elements of the geomagnetic field	Systematic exposition			
	- lecture. Heurist	ic		
	conversation. Critics	al		
	analysis. Examples			
2. Models of the geomagnetic field	Systematic exposition	n 2 Hours		
	- lecture. Heurist			
	conversation. Critical	al		
	analysis. Examples			
3. External geomagnetic field	Systematic exposition	n 4 Hours		
	- lecture. Heurist	ic		
	conversation. Critical	al		
	analysis. Examples			
4. Main geomagnetic field	Systematic exposition	n 4 Hours		
	- lecture. Heurist	ic		
	conversation. Critical	al		
	analysis. Examples			
5. Elements of paleomagnetism	Systematic exposition	n 4 Hours		
	- lecture. Heurist	ic		
	conversation. Critics	al		
	analysis. Examples			
6. Paleosecular variation	Systematic exposition	n 2 Hours		
	- lecture. Heurist	ic		
	conversation. Critics	al		
	analysis. Examples			
7. Reversal of the geomagnetic field	Systematic exposition	n 2 Hours		
	- lecture. Heurist			
	conversation. Critics	al		
	analysis. Examples			
8. Origin of the geomagnetic field	Systematic exposition	n 2 Hours		
	- lecture. Heurist	ic		
	conversation. Critics	al		
	analysis. Examples			
9. Gravific field	Systematic exposition	n 2 Hours		
	- lecture. Heurist			
	conversation. Critics			
	analysis. Examples			
10. Interpretation of gravity anomalies	Systematic exposition	n 2 Hours		
r ····································	- lecture. Heuristi			
	conversation. Critics			
	analysis. Examples			
11. The Earth's size and shape	Systematic exposition	n 2 Hours		
11. The Later of olde with orape	- lecture. Heurist			
	conversation. Critical			
	analysis. Examples			
	analysis. Examples			

Fowler, C.M.R., 1990. The solid Earth. An introduction to global geophysics. Cambridge University Press, Jacobs, J.A., 1994. Reversals of the earth's magnetic field. Cambridge University Press

Lowrie, W., 1991. Fundamentals of Geophysics. Cambridge University Press

Merrill, R.T., McElhinny, M.W., McFadden, P.L., 1994. The magnetic field of the Earth. Academic Press. Panaiotu, C., 2006, Geomagnetism, Editura Ars Docendi, Bucureşti, pp. 85

7.3 Practicals	Teaching techniques	Observations
1. Instruments in geomagnetism	Supervised practical activity	2 Hours
2. Statistical analysis of directional data	Supervised practical activity	2 Hours

3. Analysis of the external geomagnetic field using Intermagnet network	Supervised practical activity	2 Hours
4. Analysis of the main geomagnetic field using Intermagnet network	Supervised practical activity	2 Hours
5. Modeling geomagnetic anomalies	Supervised practical activity	2 Hours
6. Modeling gravity anomalies	Supervised practical activity	4 Hours

owler, C.M.R., 1990. The solid Earth. An introduction to global geophysics. Cambridge University Press,

Jacobs, J.A., 1994. Reversals of the earth's magnetic field. Cambridge University Press

Lowrie, W., 1991. Fundamentals of Geophysics. Cambridge University Press

Merrill, R.T., mcElhinny, M.W., McFadden, P.L., 1994. The magnetic field of the Earth. Academic Press.

Panaiotu, C., 2006, Geomagnetism, Editura Ars Docendi, Bucureşti, pp. 85

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms/develops theoretical and practical competences and abilities which are important for a Master student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from the European Union.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 coherence and clarity of exposition appropriate use of methods and concepts ability to apply to specific examples 	Exam (oral)	50%
Practical	- Analysis of geomagnetic and gravity fields - results interpretation	Verification	50%
Minimal	- Achieving a minimum grade of 5 in exam.		
requirements	- Attendance: presence at a minimum of 50% of	of the course hours and mandato	ory attendance at all
for passing	laboratory sessions.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Cristian Necula Conf. dr. Cristian necula

Date of approval Head of department

name and signature

Academic year 2025/2026

DO.205.1 Earth radiation budget / Bugetul radiativ al planetei

1. Study program

F B	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Earth radiation budget / Bugetul radiativ al planetei		
2.2. Teacher	Lect. dr. Gabriela Iorga		
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Gabriela Iorga		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation examen 2.7.Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	35
Research in library, study of el	ectronic res	ources, field rese	earch		17
Preparation for practicals/tutorials/projects/reports/homework					17
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				69	
3.8. Total hours per semester				125	
3.9. ECTS				5	

4. Prerequisites (if necessary)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	()
4.1. curriculum	Optics, Electricity, Thermodynamics, Notions of mathematics and chemistry
4.2. competences	Knowledge and practical capabilities of using the computer - Use of software packages for data
	analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment, white/black board and with internet connection,
	possibility of multiplying didactic materials in advance
5.2. for tutorials/practicals	Laboratory with modern equipment that allows fundamental experiments to be carried
	out; Computers and acquisition interfaces enabling computer-aided experiments; Access
	to the equipment for radiation measurements and air sampling (gases, aerosols) and
	to databases with atmospheric observations; Dedicated calculation programs (licensed
	or open source) for determining the optical parameters of the aerosol, for determining
	the radiation fluxes at different levels in the atmosphere, various Excel spreadsheets for
	determining the radiative forcing of gases and aerosols

R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its
structure and dynamics, as well as the exchanges of energy and matter in the climate system.
R2. The student/graduate knows the natural and anthropogenic factors that determine climate
variability and change, methods for monitoring and modeling environmental parameters, as well
as their effects on the environment and society.

Skills	R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. R2. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system.
Responsibility and autonomy	R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community. R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary.

7.1 Lecture [chapters]	Teaching techniques	Observations
Basic knowledge about radiation. Radiation laws for the	Lecture, description	
black body: Rayleigh-Jeans, Planck, Stefan-Boltzmann, Wien	explanation, conversation	on,
displacement law. Kirchhoff's law.	debate	
The Sun as a source of radiation. The electromagnetic spectrum	Lecture, description	on, 2 Hours
and radiation emission by the Sun and the Earth.	explanation, conversation	on,
	debate	
Radiative transfer in the terrestrial atmosphere. The equation	Lecture, description	on, 4 Hours
of radiative transport in the atmosphere. Extinction of solar	explanation, conversation	on,
radiation by scattering and absorption. Beer-Bouguer-Lambert	debate	
law.		
The global radiation balance/budget (definition, for the Earth, in	Lecture, description	on, 3 Hours
the absence of the atmosphere; for the Earth-atmosphere system;	explanation, conversation	on,
the observed balance)	debate	
Factors that influence the radiation balance/budget of the Earth.	Lecture, description	on, 6 Hours
Greenhouse gases. Aerosols. Clouds. The nature of the Earth's	explanation, conversation	on,
surface.	debate	
Time scales at which the Earth's radiation balance changes.	Lecture, description	on, 1 Hour
	explanation, conversation	on,
	debate	
Radiative forcing (concept, modeling of GHG and aerosol	Lecture, description	on, 8 Hours
forcing). The response of the climate system to radiative forcing.	explanation, conversation	on,
Feedbacks in the climate system.	debate	
The evolution of knowledge in the field of radiative transfer in the	Lecture, description	on, 2 Hours
atmosphere.	explanation, conversation	on,
	debate	

- 1. Cotton, W.R., Pielke Sr., R.A., Human impacts on weather and climate (2Ed), Cambridge Univ Press, Canbridge CB2 8RU, UK, 2007
- 2. Lamb, D., Verlinde, J., Physics and Chemistry of Clouds, Cambridge Univ Press, Canbridge CB2 8RU, UK, 2011
- 3. Nitu, C, Krapivin, V.F., Soldatov, V.Y., Information technologies for the environmental investigations, Matrix Rom, Bucharest, 2013.
- 4. Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics. From air pollution to climate change, John Willey and Sons Inc., USA, 2016
- 5. International Panel for Climate Change Reports 6AR, 5AR, 4AR, TAR, SAR, FAR; 1992-2022; https://www.ipcc.ch/reports/
- 6. Bohren, C. Huffman, D.R, Absorption and scattering of light by small particles, John Wiley, N.Y, 1983
- 7. Kondratyev, K.Ya, Climatic effects of aerosols and clouds, John Mason Ed, Praxis Publishing Ltd., Chichester, UK, 1999
- 8. Peixoto, J.P, Oort, A.H, Physics of climate, Springer Verlag, NY, USA, 1992
- 9. Kuo, N.L. An introduction to atmospheric radiation (1st/2Ed), Elsevier Science, USA 2002.
- 10. Various web sites of dedicated research platform and scientific (original research or review) papers indicated by professor during the lectures.

7.3 Practicals	Teaching techniques	Observations
1a. Laws of black body radiation: obtaining the emission spectra	Guided practical activity:	3 Hours
of a black body at different temperatures using Planck's law /	Experiment, Explanation,	
simulation the radiation emitted by a black body at different	Conversation, Hypothesis	
temperatures	testing	
1b. analysis of the distribution of the intensity of solar radiation		
scattered by constituents of the atmosphere that have different		
sizes: water drops of 10 um, 100 um considering the contribution		
of each process that determines the scattering (diffraction,		
primary internal reflection, secondary)		
1 c. analysis of the extinction efficiency versus the size of the		
radiation-scattering particle, depending on the refractive index of		
the particle Determination of the possible daily duration of the Sun's	Guided practical activity:	3 Hours
lightning, of the effective duration of the Sun's lighting	Guided practical activity: Experiment, Explanation,	3 Hours
(insolation) and the insolation fraction. Deciphering heliograms.	Conversation, Hypothesis	
(insolation) and the insolation fraction. Deciphering henograms.	testing	
Measurement of global solar radiation, reflected radiation and	Guided practical activity:	4 Hours
diffuse radiation. Determination of the albedo of different	Experiment, Explanation,	
surfaces. Determination of the net radiation at the earth's surface.	Conversation, Hypothesis	
	testing	
Determination, with dedicated software, of the direct spectral	Guided practical activity:	4 Hours
flux, of the diffuse spectral flux of solar radiation at different	Experiment, Explanation,	
levels in the atmosphere, including the terrestrial surface. Further	Conversation, Hypothesis	
processing for the determination of the total flux, the net fluxes of	testing	
diffuse radiation, the atmospheric turbidity factor. Study on the		
attenuation of global solar radiation due to clouds.		
Determination of radiative forcing determined by radiatively	Guided practical activity:	4 Hours
active gases. Determination of the direct radiative forcing for	Experiment, Explanation,	
an internal mixture and an external mixture of aerosol chemical	Conversation, Hypothesis	
species.	testing	
Determination, with dedicated software, of the optical parameters	Guided practical activity:	6 Hours
of different types of aerosol. Measurement of the total	Experiment, Explanation,	
radiation scattering coefficient for aerosol with the nephelometer.	Conversation, Hypothesis	
Determination of the Ängström exponent.	testing	

Solar photometry. The use of data from the AERONET network	Guided practical activity: 4 Hours
to study the atmospheric aerosol properties relevant to the	Experiment, Explanation,
radiative balance.	Conversation, Hypothesis
	testing

References:

To the References' list of the course, the following is added:

- 1. ***Climate of Romania, Coordinators: Sandu I., Pescaru, V.I., Poiana, I., Geicu, A., Candea, I., Tastea, D., Ed. Romanian Academy, Bucharest, Romania, 2008
- 2. Schönwiese, C.D., Klimatologie, Eugen Ulmer Verlag, Stuttgart, 2013 4.
- 3. Scientific articles published in prestigious journals and specific interactive applications, either accessible via the internet, or usable stand-alone in the laboratory, together with explanatory notes/user manuals of the equipment used (available in the laboratory).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

9. Assessin			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
		L war to	
Lecture	- The clarity, coherence and the precision of the	Written exam and oral	50%
	reasoning of an answer;	assessment	
	- Correct use of concepts, laws, models, formulas		
	and relationships;		
	- The ability to exemplify.		
Practical	- Completing laboratory assignments with an		50%
	active attitude;		
	- Knowledge and use of experimental techniques;		
	- Good quality of the interpretation of the results.		
Minimal	Attendance: attendance at a minimum of 50% of the number of course hours and mandatory attendance		
requirements	at all laboratory/seminar sessions.		
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. dr. Gabriela Iorga Lect. dr. Gabriela Iorga

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.205.2 Basics of energy audit/basics of environmental audit. Architectures and ecological houses

1. Study program

v i 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Basics of energy audit/basics of environmental audit. Architectures and
	ecological houses
2.2. Teacher	Lector Dr. Sanda Voinea
2.3. Tutorials/Practicals instructor(s)	Lector Dr. Sanda Voinea
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DA

3. Total estimated time

5. Total estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	course note	es, manuals, lectur	e notes,	bibliography	35
Research in library, study of electronic resources, field research				17	
Preparation for practicals/tutorials/projects/reports/homework			17		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			69		
3.8. Total hours per semester				125	
3.9. ECTS			5		

4. Prerequisites (if necessary)

_	
4.1. curriculum	Mathematics, physics, chemistry intermediate level
4.2. competences	Usage of specific software packages for data analysis and processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom supplied with a projector
5.2. for tutorials/practicals	Laboratory equipped for fundamental experiments; Computers and acquisition interfaces
	allowing computer-assisted experiments to be performed

6. Learning outcomes

Knowledge	R6. The student/graduate understands the mechanisms of pollutant transport and transformation, the sources and impact of plastic and radioactive materials, the functioning of green energy systems, as well as the methodological framework for environmental and energy audits. R9. The student/graduate knows the terminology specific to the field of environmental physics and ecological materials, for the purpose of effective communication in professional environments and towards society.
Skills	R6. The student/graduate can implement methods for analyzing the impact of pollutants and the life cycle of materials, understand the transport and transformation processes of substances in the environment, and systematically use audit techniques and strategies for sustainable resource and waste management. R9. The student/graduate can effectively communicate research results and proposed solutions, both in writing and orally, to diverse audiences, including colleagues, decision-makers, and the general public. Is able to synthesize information in a coherent and accessible manner.

Res	ponsibility
and	autonomy

R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting audit results and substantiating decisions regarding energy and ecological sustainability.

R9. The student/graduate has the ability to interact with key actors in the field of environmental physics and ecological materials, at the national and global level, disseminating results in the scientific community and publishing academic papers.

7.1 Lecture [chapters]	Teaching techniques	Observations
History of environmental protection; Environmental policy;	Systematic exposition	8 Hours
Input-output analysis; Environmental aspects; Environmental	- lecture. Heuristic	
aspects assessment; Legal requirements; Environmental	conversation. Critical	
management objectives, targets and programme.	analysis. Examples	
Documentation (documentation requirements, procedures,		
instructions and environmental management manual).		
Internal audit - definitions, audit criteria. Audit documentation	Systematic exposition	2 Hours
-example, requirements for auditors, audit methods, role of audit	- lecture. Heuristic	
in the management of the institution.	conversation. Critical	
	analysis. Examples	
Case study for a concrete situation: drawing up an audit	Systematic exposition -	4 Hours
programme, checklist, audit plan, simulation - conducting the	lecture. Case studies.	
audit, drawing up the audit report.	Examples. Conversations	
	with students, seminar	
	topics, homework, student	
	involvement in problem	
	solving.	
Preliminary energy audit	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Functions and operation of the building. Climate data. Thermal	Systematic exposition	6 Hours
comfort. Specific energy consumption. Energy calculations.	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Building energy balance. Building envelope	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Energy performance of building installations	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	
Energy certification. Audit report	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	

Cristian Murica, Performanta energetica a cladirilor editia I partea II-a, Best Publishing, Bucuresti 2010.

Cristian Murica, Performanta energetica a cladirilor editia I partea I-a, Best Publishing, Bucuresti 2009.

Metodologia Mc001-PII.4

Renewable Energy, Ed. 3, Bent Sorensen, Elsevier Science, 2004

Advanced Materials Research Hun Guo, Zuo Dunwen, Tang Guoxing-Advanced Design and Manufacturing Technology I-Trans Tech Pubn , 2011

Advances in Intelligent and Soft Computing 127 R. Saravanan, P. Vivekananth, Tianbiao Zhang (eds.)-Instrumentation, Measurement, Circuits and Systems-Springer-Verlag Berlin Heidelberg, 2012

 $Leda\ Gerber-Designing\ Renewable\ Energy\ Systems_\ A\ Life\ Cycle\ Assessment\ Approach-EPFL\ Press\ ,\ 2015\ Assessment\ Approach-EPFL\ Press\ ,\ 201$

Patrascu, S, Voinea, S, Fizica apelor subterane si de suprafata, Ed. Univ. Bucuresti, 1998.

Seinfeld, J.H. and Pandis, S.N., Atmospheric Chemistry and Physics. From air pollution to climate change, John Willey and Sons Inc., USA, 2006.

Tutu, H. (Ed.), Water Quality, Intech, 2017.

Frank Duffy, Stamatina Th. Rassia, Panos M. Pardalos, Cities for Smart Environmental and Energy Futures Impacts on Architecture and Technology-Springer Berlin Heidelber, 2014

7.3 Practicals	Teaching techniques	Observations
Methodology for calculating the energy performance of	PC-directed work. Case	4 Hours
buildings. Applications.	studies. Examples	
Energy performance certificate. Application for an	Supervised practical activity	4 Hours
apartment/house.		
The use of renewable energies to increase the energy performance	Supervised practical activity	4 Hours
of buildings. Exercises.		
Use of EnergyPlan and ReTScreen International calculation	PC-directed work. Case	4 Hours
software. Applications.	studies. Examples	
Determination of optical parameters of different types of aerosol:	Supervised practical activity	4 Hours
urban, rural, marine, sea-salt. Determination of Angstrom		
exponent for different aerosol types.		
Determination and monitoring of pollutants in air, water and soil	Supervised practical activity	4 Hours
with UV-VIS spectrometry.		
Determination of CO, SO2, Nox gas concentrations using FTIR-	Supervised practical activity	2 Hours
gas spectrometry.		
Determination of volatile organic compounds (VOC).	Supervised practical activity	2 Hours

References:

Explanatory notes available in the laboratory / SERA website

Calculation programs

AERONET.gov website

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The discipline responds to the current national and international development and evolution of higher education in physics and energy sources. The curriculum of the subject is adapted to the level of knowledge and current requirements of scientific research and technological activities, and is correlated with similar curricula in European universities applying the Bologna system; In order to outline the contents and the choice of teaching/learning methods, the holders of the subject have consulted the contents of similar subjects taught at universities in the country and abroad (Technical University "Gheorghe Asachi" of Iasi, Polytechnic University of Bucharest, University of Brighton Department of Environment and Technology, Leibniz University Hanover). In the current context of technological development, the fields of activity targeted are multiple (environment, energy), with potential employers from the educational, administrative, industrial and R and D environments. Master's students are provided with skills appropriate to the needs of today's qualifications, a scientific and technical training appropriate to the Master's level, enabling them to enter the labour market quickly after graduation, and the possibility of continuing their studies through doctoral programmes;

Masters students have the opportunity to actively participate in the development and implementation of new national energy and environmental policies.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final marl	k
Lecture	- Ability to understand and correctly present the	Oral examination in dialogue	70%	
	main experimental and theoretical results;	with the examiner. 40%		
	- Ability to argue scientifically, ability to			
	mathematically support the main results;	Test solving specific problems		
	- Ability to give relevant examples of the ideas	chosen by the examiner (written		
	presented;	exam) 30%		
	- Ability to draw significant practical			
	consequences from theoretical results;			
	- Ability to recognise important errors			
	Ability to use theoretical knowledge in solving			
	test problems			
Practical	Ability to use computer programs for various case	Evaluation by practical	30%	
	studies;	colloquium on the use of		
	- Participation without exception in all laboratory	PC programs.		
	sessions;			
	- Interpretation of results and processing, resulting			
	in a case study.			
Minimal	Completion of all laboratory work and grade 5 in the colloquium.			
requirements	Participating to minimum 50% of the lectures and mark 5 at practicals verification.			
for passing				
the exam				

Practicals/Tutorials/Project instructor(s), Date, Teacher's name and signature

name and signature,

13.07.2025 Lector Dr. Sanda Voinea Lector Dr. Sanda Voinea

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.210.1 Extreme phenomena. Meteorological and climatic risk

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Extreme phenomena. Meteorological and climatic risk		
2.2. Teacher Prof. dr. Mihai Dima			
2.3. Tutorials/Practicals instructor(s)	Prof. dr. Mihai Dima		
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DA		

3. Total estimated time

3. Total estilliated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study		u.		
Learning by using one's own o	course notes	s, manuals, lectur	e notes, bib	liography	48
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				95	
3.8. Total hours per semester					125
3.9. ECTS					5

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture		
5.2. for tutorials/practicals		

6. Learning outcomes

Knowledge	R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its structure and dynamics, as well as the exchanges of energy and matter in the climate system. R2. The student/graduate knows the natural and anthropogenic factors that determine climate variability and change, methods for monitoring and modeling environmental parameters, as well as their effects on the environment and society.
Skills	R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. R2. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system.

Responsibility and autonomy

- R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community.
- R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Hazard and risk. Types of hazards: geologic, hydrologic, climatic	Systematic presentation.	2 Hours
and atmospheric	Examples	
Extreme phenomena. Definition and observed manifestations	Systematic presentation.	2 Hours
	Examples	
Abrupt climate changes. Definition and examples of past abrupt	Systematic presentation.	2 Hours
climate changes	Examples	
Critical components of the climate sytem. Definition and	Systematic presentation.	2 Hours
examples	Examples	
Arctic sea-ice, the ENSO phenomenon, the Indian monsoon, the	Systematic presentation.	2 Hours
Greenland ice-sheet, the West-Antarctic ice-sheet. Properties.	Examples	
Critical thresholds and the probability to reach them		
Thermohaline circulation. Critical thresholds and the probability	Systematic presentation.	6 Hours
to reach them	Examples	
Socio-economic implications of the risk phenomena	Systematic presentation.	4 Hours
Adaptation and resilience strategies of the human society	Examples	

References:

IPCC reports, 2013, 2018, 2021.

Peixoto J and Oort K., J., 1998: Physics of Climate, Ed New York, pp. 650.

Holton J. R., Hakim, G. J., 2013: An Introduction to Dynamics Meteorology, Academic Press, UK pp. 524.

Holton J., 1996: Introducere în dinamica atmosferei (traducere din l. engleză), Ed. Tehnica, București, pp. 500.

7.3 Practicals	Teaching techniques	Observations
Visualizing data related to extreme phenomena using GRADS	Systematic presentation.	2 Hours
(Grid Analysis Data System).	Examples. Exercises	
Processing data related to extreme phenomena using GRADS.	Systematic presentation.	2 Hours
	Examples. Exercises	
Statistical methods for meteorological and climatic data analysis	Systematic presentation.	2 Hours
	Examples. Exercises	
Methods to identify extreme phenomena	Systematic presentation.	2 Hours
	Examples. Exercises	
Studying the response of the Atlantic Meridional Overturning	Systematic presentation.	2 Hours
Circulation to freshwater forcing in North Atlantic	Examples. Exercises	

References:

GRADS user's manual: http://cola.gmu.edu/grads/

von Storch, H. and Zwiers, F.W., 1999: Statistical Analysis in Climate Research. Cambridge University Press, pp. 484.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Before deciding about the content of the course, given the scientific and socio-economic significance of the topic, the tenured teaching staff have reviewed the content of similar courses taught in foreign universities. The content of the course is aligned with the requirements for teaching and research positions in various institutions

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight în final mark	
Lecture	clarity and coherence of formulationssuitable use of models and analytic formulasability to provide examples	Written examination	70%	
Practical	- Knowledge about using the GRADS application - Interpreting the results	Homework during the semester	30%	
Minimal requirements for passing the exam	- Achieving a minimum grade of 5 in each exam. - Attendance: presence at a minimum of 50% of the course hours and mandatory attendance at all			
- Skills and deeply well-argued knowledge.				

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,
Prof. dr. Mihai Dima
Prof. dr. Mihai Dima

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DO.210.2 Physical processes in clouds

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Physical processes in clouds
2.2. Teacher	Conf. dr. Bogdan Antonescu
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Bogdan Antonescu
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation examen 2.7. Classification DA

3. Total estimated time

3. Iotai estimateu tiine			T.		T.
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study				
Learning by using one's own	course notes	, manuals, lectur	e notes, bi	bliography	48
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework			23		
Tutorat					0
Other activities			0		
3.7. Total hours of individual study			95		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

4.1. curriculum	Knowledge of Thermodynamics.
4.2. competences	Knowledge of using graphic representation programs, data processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate has in-depth knowledge of the principles of atmospheric physics, its structure and dynamics, as well as the exchanges of energy and matter in the climate system. R6. The student/graduate understands the mechanisms of pollutant transport and transformation, the sources and impact of plastic and radioactive materials, the functioning of green energy systems, as well as the methodological framework for environmental and energy audits.
Skills	R1. The student/graduate can analyze atmospheric processes using theoretical and instrumental methods, interpret weather maps and satellite data, and use climate and meteorological models to describe and forecast phenomena. R6. The student/graduate can implement methods for analyzing the impact of pollutants and the life cycle of materials, understand the transport and transformation processes of substances in the environment, and systematically use audit techniques and strategies for sustainable resource and waste management.

Res	ponsi	bility
and	autor	omy

- R1. The student/graduate has the ability to plan and implement complex projects related to atmospheric phenomena, including research, forecasting, weather warning and climate policies, integrating knowledge in educational and professional contexts. He also disseminates the results in the scientific community.
- R6. The student/graduate has the ability to choose optimal solutions that offer the greatest benefit in a given context, developing and implementing strategies to reduce environmental impact, reporting audit results and substantiating decisions regarding energy and ecological sustainability.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Clouds	Systematic exposition -	2 Hours
	lecture. Examples.	
Atmospheric thermodynamics	Systematic exposition -	2 Hours
	lecture. Examples.	
Atmospheric dynamics	Systematic exposition -	2 Hours
	lecture. Examples.	
Atmospheric convection. Condensation	Systematic exposition -	2 Hours
	lecture. Examples.	
Stability and cloud formation	Systematic exposition -	2 Hours
	lecture. Examples.	
Atmospheric aerosol. Precipitation formation. Kohler theory	Systematic exposition -	2 Hours
	lecture. Examples.	
Microphysical processes in warm clouds	Systematic exposition -	2 Hours
	lecture. Examples.	
Microphysical processes in cold clouds	Systematic exposition -	2 Hours
	lecture. Examples.	
Precipitations. Thunderstorms and cloud dynamics	Systematic exposition -	2 Hours
	lecture. Examples.	
Extratropical cyclones.	Systematic exposition -	2 Hours
	lecture. Examples.	

References:

- 1. Ștefan, S., 2004: Fizica atmosferei, Vremea si Clima. Editura Universitatii din Bucuresti, 425 pg.
- 2. Lohmann, U., F. Lund, F. Mahrt, 2016: An Introduction to Clouds-From the Microscale to Climate. Cambridge University Press, 389 pg.
- 3. Rogers, R. R., M. K. Yau, 1996: A Short Course in Cloud Physics. Butterworth-Heinemann, 308 pg.
- 4. Houze, R. A., 2014: Cloud Dynamics. Academic Press, 432 pg.
- 5. Wang, P. K, 2013: Clouds and Precipitations, Cambridge University Press, 453 pg.
- 6. MacGorman, D.R. and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pg.
- 7. Pruppacher, H.R. and J.D. Klett, 1996: Microphysics of Clouds and Precipitation. Springer, 980 pg.

7.3 Practicals	Teaching techniques	Observations
Analysis of stability and physical processes in clouds using	Guided practical activity.	2 Hours
SkewT diagram		
Clouds in satellite data	Guided practical activity.	2 Hours
Cloud properties using cloud radar data	Guided practical activity.	4 Hours
Representation of microphysical processes in numerical weather	Guided practical activity.	2 Hours
prediction models		

- 1. Ștefan, S., 2004: Fizica atmosferei, Vremea si Clima. Editura Universitatii din Bucuresti, 425 pg.
- 2. Lohmann, U., F. Lund, F. Mahrt, 2016: An Introduction to Clouds-From the Microscale to Climate. Cambridge University Press, 389 pg.
- 3. Rogers, R. R., M. K. Yau, 1996: A Short Course in Cloud Physics. Butterworth-Heinemann, 308 pg.
- 4. Houze, R. A., 2014: Cloud Dynamics. Academic Press, 432 pg.
- 5. Wang, P. K, 2013: Clouds and Precipitations, Cambridge University Press, 453 pg.
- 6. MacGorman, D.R. and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pg.
- 7. Pruppacher, H.R. and J.D. Klett, 1996: Microphysics of Clouds and Precipitation. Springer, 980 pg.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- The clarity, coherence and brevity of the	Written exam.	50%
	exposition.		
	- Correct use of calculation models, formulas and		
	relationships.		
	- The ability to exemplify.		
Practical	- Knowledge and use of the experimental	Colloquium.	50%
	techniques		
	- Interpretation of the results.		
Minimal	Achieving a minimum grade of 5:		
requirements	- Attendance: presence at a minimum of 50% of the course hours and mandatory attendance at all		
for passing	laboratory sessions.		
the exam	- At least 50% in each of the criteria that determine the final grade.		
	Obtaining a grade of 10:		
	- In addition to the criteria for obtaining a grade of 5:		
	- Correct resolution of all subjects.		
	- Skills and deeply well-argued knowledge.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. dr. Bogdan Antonescu Conf. dr. Bogdan Antonescu

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.106 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification DC

3. Total estimated time

CV 10001 CSUITION CO VIIIIC					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own of	ourse notes,	manuals, lectur	e notes, bibl	iography	0
Research in library, study of electronic resources, field research					0
Preparation for practicals/tutorials/projects/reports/homework				0	
100000					0
Other activities					25
3.7. Total hours of individual study					25
3.8. Total hours per semester				25	
3.9. ECTS					1

4. Prerequisites (if necessary)

_	`	
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within				
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat				
	within 30 calendar days from the beginning of the semester. The host organization				
	st be listed in the National NGO Register ([www.just.ro/registrul-national-				
	[](http://www.just.ro/registrul-national-ong)) or included in the list of validated host				
	anizations at the Faculty of Physics.				
5.2. for tutorials/practicals					

6. Learning outcomes

0. 200	or hearing outcomes			
Knowledge	R11. The student/graduate knows the different contexts and opportunities for applying ideas in personal, social and professional activities, as well as how they can arise.			
Skills	R11. The student/graduate demonstrates negotiation skills, empathy, assertive communication, leadership, teamwork, conflict and team management, as well as public speaking skills.			
Responsibility and autonomy	R11. The student/graduate demonstrates initiative and self-control, has the capacity for anticipation and prospective evaluation, courage and perseverance in achieving personal and professional goals.			

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în	
			final mar	k	
Project	- Running the volunteer internship.	The volunteer's activity report,	100%		
	- Volunteer activity recognition file	in written format -Annex 2 of			
		the Regulation on volunteer			
		credits from the University of			
		Bucharest 50%			
		Certificate issued by the			
		host organization showing the			
		number of volunteering hours			
		completed, as well as a brief			
		evaluation of the			
		volunteer's activity - Annex 3			
		of the Regulation on volunteer			
		credits from the University of			
		Bucharest 50%			
Minimal	Existence of the volunteer's activity report and o	f the Certificate issued by the hos	st organiza	tion	
requirements	showing the number of volunteering hours complet	ed, as well as a brief evaluation of	the volunte	er's	
for passing	activity.				
the exam					
	The assessment commission from the Faculty of Physics analyzes the mentioned documents				
	and awards the				
	grade Admitted/Rejected				

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.111 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification DC

3. Total estimated time

CV 10001 CSUITION CO VIIIIC					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own of	ourse notes,	manuals, lectur	e notes, bibl	iography	0
Research in library, study of electronic resources, field research					0
Preparation for practicals/tutorials/projects/reports/homework				0	
100000					0
Other activities					25
3.7. Total hours of individual study					25
3.8. Total hours per semester				25	
3.9. ECTS					1

4. Prerequisites (if necessary)

_	`	V /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within				
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat				
	within 30 calendar days from the beginning of the semester. The host organization				
	must be listed in the National NGO Register ([www.just.ro/registrul-national-				
	g](http://www.just.ro/registrul-national-ong)) or included in the list of validated host				
	ganizations at the Faculty of Physics.				
5.2. for tutorials/practicals					

6. Learning outcomes

0. 200	or hearing outcomes			
Knowledge	R11. The student/graduate knows the different contexts and opportunities for applying ideas in personal, social and professional activities, as well as how they can arise.			
Skills	R11. The student/graduate demonstrates negotiation skills, empathy, assertive communication, leadership, teamwork, conflict and team management, as well as public speaking skills.			
Responsibility and autonomy	R11. The student/graduate demonstrates initiative and self-control, has the capacity for anticipation and prospective evaluation, courage and perseverance in achieving personal and professional goals.			

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în	
			final mar	ς	
Project	- Running the volunteer internship.	The volunteer's activity report,	100%		
	- Volunteer activity recognition file	in written format - Annex 2			
		of the Regulation on volunteer			
		credits from the University of			
		Bucharest. 50%			
		Certificate issued by the			
		host organization showing			
		the number of volunteering			
	hours completed, as well				
		as a brief evaluation of the			
		volunteer's activity - Annex 3			
		of the Regulation on volunteer			
	credits from the University of				
		Bucharest. 50%			
Minimal	Existence of the volunteer's activity report and o	f the Certificate issued by the hos	st organiza	tion	
requirements	showing the number of volunteering hours complet	ed, as well as a brief evaluation of	the volunte	er's	
for passing	activity.				
the exam					
	The assessment commission from the Faculty of Physics analyzes the mentioned documents				
	and awards the grade Admitted/Rejected.				

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature,

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.206 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation verificare 2.7.Classification DC

3. Total estimated time

3. Ittal Commattu miit					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography				0	
Research in library, study of electronic resources, field research			0		
Preparation for practicals/tutorials/projects/reports/homework			0		
Tutorat					0
Other activities			25		
3.7. Total hours of individual study			25		
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

_	`	V /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat
	within 30 calendar days from the beginning of the semester. The host organization
	must be listed in the National NGO Register ([www.just.ro/registrul-national-
	ong](http://www.just.ro/registrul-national-ong)) or included in the list of validated host
	organizations at the Faculty of Physics.
5.2. for tutorials/practicals	

6. Learning outcomes

or Dearning or	
Knowledge	R11. The student/graduate knows the different contexts and opportunities for applying ideas in personal, social and professional activities, as well as how they can arise.
Skills	R11. The student/graduate demonstrates negotiation skills, empathy, assertive communication, leadership, teamwork, conflict and team management, as well as public speaking skills.
Responsibility and autonomy	R11. The student/graduate demonstrates initiative and self-control, has the capacity for anticipation and prospective evaluation, courage and perseverance in achieving personal and professional goals.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final mar	ς
Project	- Running the volunteer internship.	The volunteer's activity report,	100%	
	- Volunteer activity recognition file	in written format - Annex 2		
		of the Regulation on volunteer		
		credits from the University of		
		Bucharest. 50%		
		Certificate issued by the		
		host organization showing		
		the number of volunteering		
		hours completed, as well		
		as a brief evaluation of the		
		volunteer's activity - Annex 3		
		of the Regulation on volunteer		
		credits from the University of		
		Bucharest. 50%		
Minimal	Existence of the volunteer's activity report and o	f the Certificate issued by the hos	st organiza	tion
requirements	showing the number of volunteering hours complet	ed, as well as a brief evaluation of	the volunte	er's
for passing	activity.			
the exam				
	The assessment commission from the Faculty of Physics analyzes the mentioned documents			
	and awards the grade Admitted/Rejected.			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature,

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DFC.207 Physico-chemistry of the environment

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Physico-chemistry of the environment
2.2. Teacher	Lect. dr. Gabriela Iorga
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Gabriela Iorga
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation colocviu 2.7.Classification DS

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study		I		
Learning by using one's own course notes, manuals, lecture notes, bibliography				35	
Research in library, study of electronic resources, field research			17		
Preparation for practicals/tutorials/projects/reports/homework			17		
Tutorat					0
Other activities				0	
3.7. Total hours of individual study			69		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

	(== === = = = J)
4.1. curriculum	Fluid Mechanics, Thermodynamics, Notions of mathematics, physics and chemistry
4.2. competences	Knowledge and practical capabilities of using the computer - Use of software packages for data
	analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment, white/black board and with internet connection,
	possibility of multiplying didactic materials in advance
5.2. for tutorials/practicals	Laboratory with modern equipment that allows performing fundamental experiments:
	samplers, meteorological station; Computers and acquisition interface enabling
	computer-aided experiments; Access to the equipment for air, water and soil sampling
	and to databases with environmental observations.

6. Learning outcomes

utcomes
R2. The student/graduate knows the natural and anthropogenic factors that determine climate
variability and change, methods for monitoring and modeling environmental parameters, as well
as their effects on the environment and society.
R3. The student/graduate knows the theoretical and practical concepts regarding the properties
and functionalities of advanced materials (polymer materials, nanomaterials, hybrid composites or
porous materials) for their application in environmental monitoring and remediation processes.
R4. The student/graduate knows the theoretical models, numerical and statistical methods applied
in modeling physico-chemical processes in the field of environmental physics, ecological materials
and renewable energy.
R7. The student/graduate knows the principles of operation and use of measurement, analysis and
testing equipment used in environmental physics and the characterization of ecological materials,
including tools specific to environmental analysis.

Skills

- R2. The student/graduate can critically analyze climate data to interpret the behavior of environmental systems, evaluating and interpreting parameters based on experimental and modeled data, estimating possible evolutions of the climate system.
- R3. The student/graduate can identify and analyze the characteristics of materials in relation to environmental applications, use characterization techniques and integrate these materials into sustainable technological solutions, conducting scientific research in the field of ecological materials with a focus on sustainability and reduced environmental impact.
- R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques.
- R7. The student/graduate can autonomously select and operate equipment and instruments appropriate to the investigated context, depending on the nature of the parameters and the level of precision required. Collects experimental data, operates equipment specific to scientific research and laboratory activities and performs laboratory tests.

Responsibility and autonomy

- R2. The student/graduate has the ability to plan and implement physical investigations on the environment, to interpret and use climate information in the decision-making process and to contribute to the development of solutions for adapting and mitigating the impact of climate change, effectively communicating the results within the scientific community and collaborating interdisciplinary.
- R3. The student/graduate has the ability to plan and implement complex projects in the field of atmospheric and climatic phenomena, as well as sustainable materials designed to reduce environmental impact, effectively disseminating the results in the scientific community.
- R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.
- R7. The student/graduate can choose the optimal working solution by critically comparing available alternatives, evaluating the technological and ecological impact in the short, medium and long term, to support sustainable and scientifically based decisions.

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction to environmental physico-chemistry. Definitions.	Lecture, description,	3 Hours
Introductory notes about matter, substance, elements and	explanation, conversation,	
chemical substances: fundamental laws in chemistry; atoms and	debate	
chemical bonds; simple and complex substances, solutions and		
mixtures.		
The environment and its components (atmosphere, geosphere,	Lecture, description,	4 Hours
biosphere, hydrosphere, cryosphere). Definitions, structure,	explanation, conversation,	
interactions, disturbances and their propagation, response to	debate	
disturbances: response categories, response times, feedback		
processes. Elements of eco-nanotechnology, use of renewable		
resources.		
Pollution sources, pollutants and types of pollutants.	Lecture, description,	4 Hours
Classifications. Processes and reactions in which they are	explanation, conversation,	
involved; redistribution and transfer of pollutants between the	debate	
components of the environment.		
Toxic pollutants. Elements of toxicity and persistence.	Lecture, description,	2 Hours
Bioaccumulation, bio-magnification, biodegradability.	explanation, conversation,	
	debate	

Water cycle in the environment. Water pollution. The impact of air pollution on water. Introduction to the physico-chemistry of underground and surface waters, drinking water, wastewater. Methods and techniques of measurement applied in the field of water pollution.	Lecture, explanation, debate	description, conversation,	2 Hours
Pollutant transport in aquatic media. Inorganics: heavy metals. Nitrogen compounds, Phosphorus compounds. Organics: persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), pesticide, Polychlorinated biphenyl (PCB), etc.	Lecture, explanation, debate	description, conversation,	2 Hours
Effects of water pollution: eutrophication, hypoxia, water acidification. Water purification, filtration systems, decontamination and bioremediation of water. Measurement methods and techniques in the field of water pollution. The evolution of knowledge in the field of water pollution.	Lecture, explanation, debate	description, conversation,	2 Hours
Air pollution - local, global and regional perspective. Gaseous pollutants (compounds with sulphur, nitrogen, carbon, non-methane hydrocarbons) and pollutants in the form of particles (PM10, PM2.5, PM1). Heavy metal pollution. Tropospheric ozone. Physico-chemical properties that determine the biological effects of pollutants. Vertical distribution, dispersion and deposition of pollutants. Dry deposits and wet deposits - acid deposits. Legislation regarding ambient air quality on an international scale, in the European Union and in Romania. Methods and techniques of measurement applied in the field of air quality.	Lecture, explanation, debate	description, conversation,	5 Hours
Soil pollution. The impact of air pollution on the soil. Physicochemical characteristics of soils. Monitoring the physicochemical properties of soils. Soil contamination. Bioremediation of soils polluted with heavy metals. Measurement methods and techniques. The evolution of knowledge in the field of soil pollution.	Lecture, explanation, debate	description, conversation,	2 Hours
The principles of sustainable development, sustainability, circular economy. Green chemistry concept. International cooperation and scientific progress regarding research and reduction of environmental pollution and climate change. Reports of the Intergovernmental Panel on Climate Change (IPCC). Environmental pollution monitoring campaigns versus intensive measurement campaigns.	Lecture, explanation, debate	description, conversation,	2 Hours

- 1. Cheremisinoff, N., P., Handbook of air pollution prevention and control, Elsevier, MA, USA, 2002
- 2. Colls, J., Air pollution, 2nd Ed, Taylor § Francis e-Library, 2003.
- 3. Hernandez-Soriano, M.C.(Ed.), Environmental Risk Assessment of Soil Contamination, Intech, 2014.
- 4. Harrison, R.M., Understanding our Environment: An Introduction to Environmental Chemistry and Pollution (3rd Ed.), The Royal Society of Chemistry, Cambridge CB4 0WF, UK, 1999.
- 5. Iorga, G. "Air pollution and environmental policies, EU and Romania: where we stand, what the data reveals, what should be done in the future?", Book Chapter (23 pg) in Todor, A. and Helepciuc, F.E. (Eds.) "Europeanization of Environmental Policies and their Limitations: Capacity Building", Springer Nature Switzerland AG, Cham., ISBN 978-3-030-68585-0, https://doi.org/10.1007/978-3-030-68586-7_4, 2021
- 6. Jacobson, M. Z., Atmospheric pollution: history, science and regulation, Cambridge Univ. Press, Cambridge UK, 2002
- 7. Nitu, C, Krapivin, V.F., Soldatov, V.Y., Information technologies for the environmental investigations, Matrix Rom, Bucuresti, 2013.

7.2 Tutorials	Teaching techniques	Observations
---------------	---------------------	--------------

The seminar topics follow the content of the course. The problems discussed aim at a deep understanding of the theoretical concepts presented in the lectures, the development of computational skills, and the proper use of the fundamental concepts of Physical Mechanics.

28 Hours

28 Hours

References:

To the References' list of the course, the following is added:

- 1. Ibanez, J.G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A., Singh, M.M., Environmental Chemistry: Fundamentals, Springer, New York, NY, 2007, https://doi.org/10.1007/978-0-387-31435-8
- 2. Websites of Agencies Providing Methods and Guidelines Related to Environmental Monitoring: The U.S. Environmental Protection Agency (USEPA) USAWebsite: www.epa.gov/ The International Standards Organization (ISO) Switzerland Website: www.iso.ch/ The French Association for Normalization (FAN or AFN) France Website: www.afnor.fr/

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the particular importance of the discipline for applications using modern technology, the leader of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is according to the requirements for employment in research institutes in atmospheric physics working groups and in education.

• The discipline meets the current requirements of development and evolution on a national and international level of higher education in the field of environmental sciences. The curriculum of the discipline is adapted to the level of knowledge and the current requirements of scientific research and technological activities, being correlated with similar study programs from European universities that apply the Bologna system. Master's students will have the necessary work skills to approach an interdisciplinary study in environmental sciences. The skills acquired by mastering the subjects covered in this course ensure an easier integration of graduates in mixed work groups. The master's students are provided with adequate competences with the needs of the current qualifications, a scientific and technical training corresponding to the master's level, which will allow them to be quickly inserted on the labor market after graduation (the fields of activity targeted are multiple, the possible employers being both from the educational area, research and development area, as well as from the industrial field, but also have the possibility of continuing studies through doctoral programs.

METHODOLOGICAL REMARKS • At each course session, the student will receive material containing schemes/diagrams, examples, stages of calculation procedures that will be explained in detail by the professor in his lecture. The interactive professor-student dialogue will represent the assurance that the students have clarified the concepts addressed. • For each topic addressed in the laboratory, the students will work as much as possible in groups of a maximum of two, under the direct guidance of the professor. The professor checks, interprets and discusses the results with each work subgroup separately, at the end of each work session. • The professor helps the students in preparing the material for the exam. Students can ask questions or discuss aspects addressed in the course or laboratory during the additional consultation hours, the schedule of which is made by mutual agreement between the professor and the student. • Attendance at lectures and practical activities is an essential condition for the good performance of the entire educational activity, so it is recommended to students to attend all classes. The material required for the exam will be presented, discussed in classes and laboratories/seminars. The wrong information about the discussions at the course/seminar/laboratory or the lack of it, the lack of materials necessary for the preparation for knowledge verifications and exams cannot be invoked by absence from the course. The listed references include at least all the subjects covered in the course and laboratory/seminar, for deepening some subjects according to the interest of each student. • Students' participation during the lectures is necessary because a dialogue helps them to better understand the concepts taught, to use an appropriate vocabulary, it creates the possibility of maintaining an interactive dialogue, as well as integration in the academic conduct. For an active presence in the course and laboratory, students are asked to review the material presented in the previous courses and laboratories. By participating in this course, the student agrees to accept the code of academic conduct presented in the University Charter, the Code of Ethics and the Regulation regarding the professional activity of students. The code prohibits students from copying and other forms of exam cheating, plagiarizing papers, presenting fraudulent documents and forging signatures.

9. Assessment

7 • 1 100 C00 III C				
Activity type	Assessment criteria	Assessment methods	Weight în	1
			final mark	

Lecture	- The clarity, coherence and the precision of the reasoning of an answer;	Written examination	50%
	- Correct use of concepts, laws, models, formulas		
	and relationships;		
	- The ability to exemplify;		
Tutorial	- correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Continuos examination	50%
Minimal	Attendance at a minimum of 50% of the number of	courses and mandatory attendance	at all seminars.
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. dr. Gabriela Iorga Lect. dr. Gabriela Iorga

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DFC.211 Simulation methods, modelling for renewable and alternative energy sources

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Simulation methods, modelling for renewable and alternative energy
	sources
2.2. Teacher	Conf Dr. Cătălin Berlic
2.3. Tutorials/Practicals instruc	or(s) Conf Dr. Cătălin Berlic
2.4 Year of study 2 2.5. S	mester 2 2.6. Type of evaluation 0 2.7.Classification DS

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes.	, manuals, lectur	e notes, bibl	iography	43
Research in library, study of electronic resources, field research			21		
Preparation for practicals/tutorials/projects/reports/homework			86		
Tutorat			4		
Other activities			-69		
3.7. Total hours of individual study			85		
3.8. Total hours per semester			125		
3.9. ECTS					5

4. Prerequisites (if necessary)

4.1. curriculum	Notions of mathematics, physics at intermediate level
4.2. competences	Knowledge of using graphic representation programs, data processing.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (Computer, video projector, internet connection);
	Course notes; Recommended bibliography
5.2. for tutorials/practicals	Computers and acquisition interfaces enabling computer-aided experiments;

6. Learning outcomes

Knowledge	R4. The student/graduate knows the theoretical models, numerical and statistical methods applied in modeling physico-chemical processes in the field of environmental physics, ecological materials and renewable energy.
Skills	R4. The student/graduate can develop and use computational models and statistical tools for the simulation, analysis and interpretation of complex phenomena in environmental physics, the field of ecological materials and environmental technologies. He also uses specialized numerical models for meteorological predictions and applies statistical analysis techniques.
Responsibility and autonomy	R4. The student/graduate has the ability to critically analyze specialized information and apply the knowledge acquired to develop and validate computational models, formulating rigorous scientific conclusions and substantiating decisions by interpreting data from processes specific to environmental physics.

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction to Multiphysics - introduction to modeling and	Systematic exposition -	2 Hours
simulation of physical phenomena	lecture. Examples.	
AC/DC modeling - modeling of static components in	Systematic exposition -	4 Hours
electromagnetism.	lecture. Examples.	
Acoustic modeling - Simulation of inductive and resistive sound	Systematic exposition -	4 Hours
damped in a model of a muffler	lecture. Examples.	
Arduino microcontroller	Systematic exposition -	4 Hours
	lecture. Examples.	
Heat transfer - basic modeling techniques for heat transfer using	Systematic exposition -	2 Hours
the heat transfer module.	lecture. Examples.	
PDE modeling and simulation	Systematic exposition -	4 Hours
	lecture. Examples.	

- 1. S. Kumar, N. Gupta, S. Kumar, S. Upadhyay, "Renewable Energy Systems: Modeling, Optimization and Applications", Scrivener Publishing LLC., 2022
- 2. R.A. Messenger, A. Abtahi, "Photovoltaic Systems Engineering", CRC Press 2023
- 3. I. Dincer, C. Zamfirescu, "Sustainable Energy System Design and Modeling", Academic Press (Elsevier), 2020

7.2 Tutorials	Teaching techniques	Observations
Planar - parallel capacitors. Carrying out electrostatic analyzes of	Presentation, conversation,	2 Hours
a capacitor and obtaining its capacity.	exercises	
Studying the acoustic pressure distribution of an ignition	Presentation, conversation,	4 Hours
subwoofer - acoustic modeling in COMSOL.	exercises	
Simulation of damped inductive and resistive sound in a model of	Presentation, conversation,	2 Hours
an exhaust.	exercises	
Using and programming of the ARDUINO microprocessors	Presentation, conversation,	2 Hours
	exercises	
Biomaterial pills.	Presentation, conversation,	2 Hours
	exercises	
Thermal disaggregation in a parallel plane reactor.	Presentation, conversation,	2 Hours
	exercises	
Surface reactions in a micro-reactor.	Presentation, conversation,	2 Hours
	exercises	
Optimization of a dipole antenna.	Presentation, conversation,	2 Hours
	exercises	
Estimation of a thermal conductivity distribution at a given	Presentation, conversation,	2 Hours
temperature profile.	exercises	

References:

- 1. B. V. Babu, R, Banerjee, "Energy Systems Modeling and Policy Analysis", C.R.C. Press 2024
- 2. Y. Kishita, "Applied Energy Simulation for Engineers and Scientists", Springer, 2022

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

74 TUDO CUSTATE TO THE TOTAL TOTAL TO THE TO					
	Activity type	Assessment criteria	Assessment methods	Weight în	
				final mark	

Lecture	 Knowledge of fundamental concepts in computer simulations of polymers; Accurate acquisition and understanding of the topics covered in the course; Demonstration of theoretical concepts using correct computational formulas; Clarity, coherence, and conciseness of the presentation; Correct use of the studied physical models, formulas, and computational relationships; Ability to provide relevant examples; Ability to apply acquired knowledge to solve 	Oral examination	60%
Practical	practical problems. - Knowledge and correct use of specific experimental techniques - Data processing and analysis;	Oral examination	40%
Minimal requirements for passing the exam	Correct exposition of a theoretical subject. A minimum grade of 5 must be obtained in each component of the evaluation. Attendance: at least 50% of the course hours and mandatory attendance at all seminar sessions. At least 50% achievement in each of the criteria that determine the final grade.		

Practicals/Tutorials/Project instructor(s), Teacher's Date, name and signature

name and signature,

13.07.2025 Conf Dr. Cătălin Berlic Conf Dr. Cătălin Berlic

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.212 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Environmental Physics and Eco-Friendly Materials

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Cătălin Berlic
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification DC

3. Total estimated time

or rotal collilated tille					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	0
Research in library, study of el	ectronic res	ources, field rese	earch		0
Preparation for practicals/tutorials/projects/reports/homework				0	
Tutorat				0	
Other activities				25	
3.7. Total hours of individual study				25	
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

_	`	V /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within		
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat		
	ithin 30 calendar days from the beginning of the semester. The host organization		
	ust be listed in the National NGO Register ([www.just.ro/registrul-national-		
	ng](http://www.just.ro/registrul-national-ong)) or included in the list of validated host		
	rganizations at the Faculty of Physics.		
5.2. for tutorials/practicals			

6. Learning outcomes

Knowledge	R11. The student/graduate knows the different contexts and opportunities for applying ideas in personal, social and professional activities, as well as how they can arise.
Skills	R11. The student/graduate demonstrates negotiation skills, empathy, assertive communication, leadership, teamwork, conflict and team management, as well as public speaking skills.
Responsibility and autonomy	R11. The student/graduate demonstrates initiative and self-control, has the capacity for anticipation and prospective evaluation, courage and perseverance in achieving personal and professional goals.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final marl	ς
Project	- Running the volunteer internship.	The volunteer's activity report,	100%	
	- Volunteer activity recognition file	in written format - Annex 2		
		of the Regulation on volunteer		
		credits from the University of		
		Bucharest. 50%		
		Certificate issued by the		
		host organization showing		
		the number of volunteering		
	hours completed, as well			
		as a brief evaluation of the		
		volunteer's activity - Annex 3		
		of the Regulation on volunteer		
		credits from the University of		
	Bucharest. 50%			
Minimal	Existence of the volunteer's activity report and o	f the Certificate issued by the hos	st organiza	tion
requirements	showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's			
for passing	activity.			
the exam				
	The assessment commission from the Faculty of Physics analyzes the mentioned documents			
	and awards the grade Admitted/Rejected.			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature,

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA