Programul de studii: Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans Applications

Domeniul de studii: Fizică/Physics

Ciclul de studii: Master

Discipline obligatorii:

DI.101 Statistical Quantum Physics

DI.102 Interactions of the ionizing particles with matter

DI.103 Groups theory and applications in Physics

DI.104 Ethics and academic integrity

DI.105 Research activity practice

DI.108 Radiation sources, dosimetry, and radiological protection

DI.109 Medical and Nuclear Electronics

DI.201 Relativistic nuclear Physics. Anomal states and phase transitions in nuclear matter

DI.202 Elementary particles phenomenology. Elements of Cosmology and astroparticle Physics.

DI.206 Research activity practice

DI.207 Research activity and Dissertation thesis preparation

Discipline opționale:

DO.106.1 Radionuclides, environmental radioactivity, and nuclear waste management

DO.106.2 Applications of Nuclear Physics in life sciences and medicine

DO.110.1 Models for nuclear structure, nuclear and photonuclear reactions

DO.110.2 Experimental physics of heavy-ions at low energies

DO.111.1 Detection methods in Physics of atom, nucleus, elementary particles, and Astrophysics

DO.111.2 Large experiments in Nuclear Physics, Particle Physics and Astrophysics

DO.203.1 Nuclear fission and fusion. Nuclear reactors and nuclear energetics

DO.203.2 Radioactive beams, nuclear bosonic condensation, and new types of nuclei

DO.204.1 Nuclear magnetic resonance. Physical principles and applications

DO.204.2 Atomic and molecular clusters

DO.208.1 Spectroscopic methods and techniques for investigation of the nuclear and subnuclear systems

DO.208.2 Properties of atomic and molecular systems. Experimental models and techniques

DO.209.1 Lasers, plasma, and acceleration methods. Experimental applications at ELI-NP

DO.209.2 Plasma physics in the study of nuclear, astrophysical, and cosmological processes

Discipline facultative:

DFC.107 Volunteering

DFC.112 Simulation codes in Nuclear Physics

DFC.113 Nuclear archaeology

DFC.114 Volunteering

DFC.205 Volunteering

DFC.210 Complements of nuclear and photonuclear reactions

DFC.211 Current experimental problems in Atomic and Nuclear Physics

DFC.212 Nuclear security

DFC.213 Volunteering

Academic year 2025/2026 DI.101 Statistical Quantum Physics

1. Study program

	-	
1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

2.1. Course unit title	Statistical Quantum Physics
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification DA

3. Total estimated time

3.1. Hours per week 2 3.2. Lectures 1 3.3. Tutorials/Practicals/Projects 3.4. Total hours per semester 28 3.5. Lectures 14 3.6. Tutorials/Practicals/Projects Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography	1/0/0	
Distribution of estimated time for study	14/0/0	
·		
Learning by using one's own course notes, manuals, lecture notes, bibliography		
	30	
Research in library, study of electronic resources, field research		
Preparation for practicals/tutorials/projects/reports/homework		
Tutorat		
Other activities		
3.7. Total hours of individual study		
3.8. Total hours per semester		
3.9. ECTS		

4. Prerequisites (if necessary)

_	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents		
7.1 Lecture [chapters]	Teaching techniques	Observations
Quantum states. Microstates and macrostates of a	Systematic exposition -	1 Hour
quantum system. Statistical (density) operator:	lecture. Examples	
definition and properties. Time evolution.		
Quantum entropy. Boltzmann-von Neumann	Systematic exposition -	3 Hours
formula. Physical interpretation. Principle of	lecture. Examples	
maximum entropy. Equilibrium distributions.		
Statistical operator in equilibrium. BoltzmannGibbs formula.		

Partition functions: definition and properties. Entropy in thermodynamic equilibrium, natural variables. Equilibrium statistical ensembles. Ensemble averages. Canonical, grand-canonical	Systematic exposition - lecture. Examples	2 Hours
and microcanonical ensembles		
The indistinguishability of quantum particles.	Systematic exposition -	4 Hours
Occupations number representation. Pauli principle.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent fermions. Fermi-Dirac statistics.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent bosons. Bose-Einstein statistics.	lecture. Examples	
Applications.		

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică
- 3. K. Huang, Statistical Mechanics, John Wiley and sons, 1987
- 4. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017.

7.2 Tutorials	Teaching techniques	Observations
The statistical thermodynamics of the ideal	Problem solving	4 Hours
fermionic gas. White dwarf stars. Neutron stars.		
The statistical thermodynamics of the ideal bosonic	Problem solving	4 Hours
gas.		
Statistical mechanics of lattice vibrations. Phonons.	Problem solving	2 Hours
Debye model.		
Heisenberg model and applications.	Problem solving	4 Hours

References:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. D. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, IOP 1999.
- 3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity and coherence of exposition - Correct use of the methods/ physical models - The ability to give specific examples	Written test and oral examination	60%
Tutorial	Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50 of exam score and of homeworks.		

Date, Teacher's

name and signature,

13.07.2025 Prof. Dr. Virgil Baran

Practicals/Tutorials/Project instructor(s),

name and signature

Lect. Dr. Virgil V. Baran

Date of approval

15.07.2025

Head of department

name and signature

Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.102 Interactions of the ionizing particles with matter

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Interactions of the ionizing particles with matter
2.2. Teacher	Mihaela Parvu, Oana Ristea
2.3. Tutorials/Practicals instructor(s)	Mihaela Parvu, Oana Ristea
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification DA

3. Total estimated time

3. Ibiai estillateu tille					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bib	liography	44
Research in library, study of electronic resources, field research			18		
Preparation for practicals/tutorials/projects/reports/homework			28		
Tutorat			0		
Other activities			4		
3.7. Total hours of individual study			94		
3.8. Total hours per semester			150		
3.9. ECTS			6		

4. Prerequisites (if necessary)

4.1. curriculum Mathematical analysis, Algebra, Geometry, Equations of mathematical physics, Electric	
	Atomic physics, Nuclear physics, Optics, Quantum physics, Statistical physics
4.2. competences	Programming languages, Physical data processing and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (preferably, but not required, multimedia facilities)
5.2. for tutorials/practicals	Experimental setups from Nuclear Physics Laboratory, Dosimetry Laboratory, Computer
	Network (or individual laptops) Films obtained in the 81 cm bubble chamber / CERN
	exposed to a beam of pi- of 2.2 GeV / c at the accelerator of 28GeV Films obtained at
	the 2 m bubble chamber / CERN filled with hydrogen Films obtained at high pressure
	chamber - JINR-Dubna, filled with 3He exposed to beams of pi+ / _ at kinetic energies
	of 100, 120, 145 and 180 MeV

Knowledge The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating principles of the main classes of detectors, and their applications in technological and medical fields. R3. The student/graduate knows and understands the operating principles and applicability of fundamental equipment used in each subfield of atomic and nuclear physics. R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles and rules of radiological protection. The student/graduate has advanced knowledge of the behavior of radionuclides in the environment, as well as of the natural and anthropogenic processes that influence environmental radioactivity. Skills R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R4. The student/graduate applies and evaluates safety and radiological protection regulations, applicable in educational and research laboratories. R5. The student/graduate uses sampling, analysis, and data interpretation methods for radioactive contamination, including spectrometry and dosimetry techniques applied in environmental contexts. R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, Responsibility acting autonomously and responsibly in decision-making. and autonomy The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health.

7.1 Lecture [chapters]	Teaching tech	niques		Observations
Sources of radiation and radioactivity: a) Primary cosmic rays: component of charged particles, neutrinos, gamma, characteristic	Systematic lecture. Examp	exposition bles	-	4 Hours
X-rays, their possible origins, role models; b) Cosmic-secondary rays; interactions with the atmosphere; c)				
Terrestrial radiation (natural and artificial); d) Sources of geoterrestrial nature				

a) Electronic energy losses of heavy charged particles - heavy particles and ions: effective sections, stopping power depending on the energy domain, knock-on electrons (electrons delta); Bethe-Bloch equation, energy losses in thin layers of material; fluctuations in energy losses, the case of mixtures and compounds, ionization efficiency, multiple scattering at small angles, the Cerenkov effect and the transition radiation b) Interactions of photons and electrons in the matter: radiation length, energy losses for electrons, critical energy; photon energy losses (Raylegh, Thomson, Compton scattering, photoelectric effect), bremsstrahlung and pair production at high energies, electromagnetic cascade production at high energies c) Energy losses of muons d) Energy losses of neutrinos	Systematic exposition - lecture. Examples	14 Hours
II. Interactions with nuclei a) Interactions of heavy charged particles - Lindhard model b) Neutron interactions c) Photonuclear and electronuclear interactions at high energies	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	6 Hours
III. Specific detection principles according to the type of particles and the energy field considered	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	4 Hours

- 1) M. Nastasi, J. Mayer, J. Hirvonen, Ion-solid interactions: fundamentals and applications, Cambridge University Press 20041.
- 2) G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 3) W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 4) Claus Grupen, Astroparticle Physics, Springer-Verlag Berlin Heidelberg 2005
- 5) Particle Data Group, http://pdg.lbl.gov (27. Passage particles through Matter))
- 6) I. Lazanu, Oana Ristea, INTERACTIILE PARTICULELOR CU MATERIA Caiet de laborator si aplicatii numerice versiune electronica

7.3 Practicals	Teaching techniques	Observations
Measurement of cosmic rays using scintillator detectors and	Guided practical activity	2 Hours
calculation of the spectrum		
Experimental study of the interactions of alpha particles,	Guided practical activity	10 Hours
electrons, neutrons, and gamma rays in various types of detectors		
Calculation of energy losses for high-energy particles (electrons,	Guided practical activity	4 Hours
positrons, and delta electrons) using data obtained from		
the bubble chamber and streamer chamber - experimental		
determination of the Bethe-Bloch equation		
Monte Carlo simulations of ion interactions in various media	Guided practical activity	4 Hours
(electronic, nuclear, and phonon contributions) using specific		
codes (e.g., SRIM, FLUKA)		
Numerical applications	Problem solving	8 Hours

References:

I. Lazanu, Oana Ristea, INTERACTIILE PARTICULELOR CU MATERIA - Caiet de laborator si aplicatii numerice - versiune electronica

professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Writen examination	70%
Tutorial	ability to use specific problem solving methodsability to analyse the results	Homeworks/writen tests	10%
Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 		20%
Minimal requirements for passing the exam	Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical results on topics imposed. Carrying out all the activities during the semester Obtaining note 5 by summing the points obtained at the activities during the course and examination according to the weights specified		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,

13.07.2025 Mihaela Parvu, Oana Ristea Mihaela Parvu, Oana Ristea

Date of approval Head of department

name and signature

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DI.103 Groups theory and applications in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Groups theory and applications in Physics
2.2. Teacher	Conf.dr. Vasile Bercu, Conf.dr. Oana Ristea
2.3. Tutorials/Practicals instructor(s)	Conf.dr. Vasile Bercu, Conf.dr. Oana Ristea
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes.	, manuals, lectur	e notes, bibl	iography	61
Research in library, study of el	ectronic res	ources, field rese	earch		31
Preparation for practicals/tutorials/projects/reports/homework			30		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			122		
3.8. Total hours per semester			150		
3.9. ECTS		6			

4. Prerequisites (if necessary)

4.1. curriculum	Linear algebra, Quantum mechanics	
4.2. competences	Knowledge about: mechanics, atomic physics, solid state physics, nuclear and particle physics	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Applications in atomic and molecular physics:	Systematic exposition -	2 Hours
Elements, operations, and point groups of symmetry	lecture. Examples	
Point group theory of symmetry and the properties of atomic and	Systematic exposition -	2 Hours
molecular systems	lecture. Examples	
Symmetry and the interactions of atomic orbitals	Systematic exposition -	2 Hours
Valence bond theory and hybridization of atomic orbitals	lecture. Examples	
Applications in Nuclear Physics: Isospin in Nuclear Physics, an example of the SU(2) group. Iospin multiplets. Isospin in nucleon-nucleon and pion-nucleon interactions. Relative decay rates and cross-sections	Systematic exposition - lecture. Examples	3 Hours
Quark model and SU(3) symmetry. Isospin and strangeness of hadrons. SU(3) raising and lowering operators. Combining SU(3) states: 2 quarks, adding the 3rd quark, quark-antiquark states	Systematic exposition - lecture. Examples	5 Hours

References:

- 1. F. Halzen, A. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics. Wiley, 1991.
- 2. I. Lazanu, Spectroscopia hadronilor, Ed. Univ. din Bucuresti, 1998
- 3. S. Wong, Introductory Nuclear Physics, Wiley, 1998
- 4. Peter W. Atkins, Ronald S. Friedman, Molecular Quantum Mechanics, Oxford University Press, 2010
- 5. Robert R. Carter, Molecular symmetry and group theory, John Wiley and Sons, Inc. 1998

7.2 Tutorials	Teaching techniques	Observations
Symmetry in atomic and molecular systems: the role of point	Problem solving	2 Hours
group theory and orbital interactions		
Valence bond theory and orbital hybridization in atomic and	Problem solving	2 Hours
molecular physics		
Applications of symmetry and group theory in understanding	Problem solving	2 Hours
atomic and molecular structures		
Isospin aplications	Problem solving	2 Hours
Decay rates and cross-section in nucleon/pion-nucleon	Problem solving	3 Hours
scatterings - examples		
Hadron (meson and baryon masses) calculations	Problem solving	3 Hours

References:

- 1. Tatiana Angelescu, Alexandru Mihul, Probleme de Fizica particulelor elementare la energii inalte, Editura Tehnica, Bucuresti, 1971
- 2. Ahmad Kamal, 1000 Solved Problems in Modern Physics, Springer, 2010
- 3. Lim Yung-Kuo, Problems and solutions on atomic, nuclear and particle physics, World Scientific, 2000
- 4. Peter W. Atkins, Ronald S. Friedman, Molecular Quantum Mechanics, Oxford University Press, 2010
- 5. Robert R. Carter, Molecular symmetry and group theory, John Wiley and Sons, Inc. 1998

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	

Lecture	- Clarity and coherence of exposition Written test		70%	
	- Correct use of the methods/			
	physical models			
	- The ability to give specific examples			
Tutorial	- Ability to use specific problem solving methods Homeworks 30%			
Minimal	Requirements for mark 5 (10 points scale)			
requirements	At least 50% of exam score.			
for passing				
the exam	Requirements for mark 10 (10 points scale)			
	Correct solutions to all subjects in final exam. Correct solutions to homework problems.			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf.dr. Vasile Bercu, Conf.dr. Oana Conf.dr. Vasile Bercu, Conf.dr. Oana

Ristea Ristea

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DI.104 Ethics and academic integrity

1. Study program

1.1. University	University of Bucharest		
1.2. Faculty	Faculty of Physics		
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics		
1.4. Field of study	Fizică/Physics		
1.5. Course of study	Master		
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans		
	Applications		

2. Course unit

2.1. Course unit title	Ethics and academic integrity
2.2. Teacher	lector dr.Sanda Voinea
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7.Classification DS

3. Total estimated time

3.1. Hours per week13.2. Lectures13.3. Tutorials/Practicals/Projects0/0/03.4. Total hours per semester143.5. Lectures143.6. Tutorials/Practicals/Projects0/0/0Distribution of estimated time for studyLearning by using one's own course notes, manuals, lecture notes, bibliography31Research in library, study of electronic resources, field research15Preparation for practicals/tutorials/projects/reports/homework15Tutorat0Other activities03.7. Total hours of individual study613.8. Total hours per semester753.9. ECTS3	21 Total estimated time					
Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 15 Tutorat Other activities 3.7. Total hours of individual study 3.8. Total hours per semester 75	3.1. Hours per week	1	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/0/0
Learning by using one's own course notes, manuals, lecture notes, bibliography31Research in library, study of electronic resources, field research15Preparation for practicals/tutorials/projects/reports/homework15Tutorat0Other activities03.7. Total hours of individual study613.8. Total hours per semester75	3.4. Total hours per semester	14	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/0/0
Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 15 Tutorat 0 Other activities 3.7. Total hours of individual study 3.8. Total hours per semester 75	Distribution of estimated time	for study				
Preparation for practicals/tutorials/projects/reports/homework Tutorat Other activities 3.7. Total hours of individual study 3.8. Total hours per semester 15 0 75	Learning by using one's own of	ourse notes.	, manuals, lectur	e notes, bibl	iography	31
Tutorat 0 Other activities 0 3.7. Total hours of individual study 61 3.8. Total hours per semester 75	Research in library, study of electronic resources, field research					15
Other activities03.7. Total hours of individual study613.8. Total hours per semester75	Preparation for practicals/tutorials/projects/reports/homework					15
3.7. Total hours of individual study613.8. Total hours per semester75	Tutorat				0	
3.8. Total hours per semester 75	Other activities				0	
	3.7. Total hours of individual study				61	
3.9. ECTS 3	3.8. Total hours per semester					75
	3.9. ECTS					3

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate should know the norms and ethical principles regarding scientific research in the field, as well as develop a culture of responsibility in intellectual work.
Skills	R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field.
Responsibility and autonomy	R10. The student/graduate should demonstrate solidarity, responsiveness, and support for strengthening academic integrity.

7.1 Lecture [chapters]	Teaching techniques	Observations
	0	

Moral evaluation frameworks. Fundamental concepts of ethics.	Lecture. Discussion.	Example.	2 Hours
Ethics and the scientific community.			
Criteria for moral evaluation: consequences / intentions, virtues.			
Academic integrity: institutional tools.	Lecture.	Example.	2 Hours
	Discussion.		
Codes and ethics commissions.			
Principles of research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Challenges and dilemmas in research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Publication ethics: authorship and co-authorship	Lecture.	Example.	2 Hours
	Discussion.		
Access to resources (fairness and equity in academic	Lecture.	Example.	2 Hours
organizations and research teams)	Discussion.		
Deontology of teamwork in scientific research	Lecture.	Example.	2 Hours
	Discussion.		

Julian Baggini, Peter S. Fosl, A Compendium of Ethical Concepts and Methods, Blackwell Publishing, 2014.

Blaxter, L, Hugh, C. Tight, L. How to research, New York, 2006

Angelo Corlett. "The Role of Philosophy in Academic Ethics", Journal of Academic Ethics, Volume 12, Issue 1, pp 1–14, 2014

Codul de etică al Universității din București https://unibuc.ro/wp-content/uploads/2021/01/CODUL-DE-ETICA-SI-DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf

Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)

Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.

Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002

Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.

James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.

Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dilemma: Talking about Plagiarism and Academic Integrity in the Digital Age", English Journal 100.6, pp. 47–53, 2011

Anthony Weston, A Practical Companion to Ethics, Oxford University Press, 2011

Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006

Bretag, T. (ed), Handbook of Academic Integrity, Singapore: Springer, 2016

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical implications for impact. Not only abstract arguments and positions are discussed and evaluated, but also issues related to the ethical infrastructure of academic organizations or moral decision-making tools that can be used by students in their academic work and future professional life

9. Assessment

J. Abscasiii	ont .		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal	Achieving the grade of ADMISSION in the essay,	attending at least 50% of the course	es
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 lector dr.Sanda Voinea

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DI.105 Research activity practice

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Research activity practice
2.2. Teacher	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation project assessment 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	28	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study	1	l		
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	24
Research in library, study of electronic resources, field research				12	
Preparation for practicals/tutorials/projects/reports/homework				11	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				47	
3.8. Total hours per semester				75	
3.9. ECTS				3	

4. Prerequisites (if necessary)

	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Completion of courses from the first and second year curriculum
4.2. competences	Knowledge of mathematics, physics, programming languages and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology. R10. The student/graduate should know the norms and ethical principles regarding scientific research in the field, as well as develop a culture of responsibility in intellectual work. R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field. R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field. R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

Responsibility	R8. The student/graduate participates actively and responsibly in international projects, respecting
and autonomy	the scientific, ethical, and collaborative standards of the fundamental physics research community.
	R10. The student/graduate should demonstrate solidarity, responsiveness, and support for
	strengthening academic integrity.
	R11. The student/graduate should apply effective communication and coordination techniques in
	diverse teams, managing tasks and professional relationships at various hierarchical levels.

7.3 Practicals	Teaching techniques	Observations
In accordance with the research topic chosen for the practice.		1 Hour
The topics will lead to the definition of dissertation topics in		
accordance with the existing proposals.		
Research topics (theoretical and experimental approaches		4 Hours
specific to the fields of atomic and nuclear physics):		
(Coordinator: Prof.univ.dr. Mihaela SIN, Dr. Dan Mihai		
Filipescu)		
1) Calculation of cross sections for neutron-induced reactions on		
plutonium isotopes (238Pu-242Pu) in the energy range 10 keV –		
30 MeV		
2) Calculation of the photo-fission cross sections for 230Th,		
232Th in the energy range 3 - 30 MeV		
3) Comparative analysis of the photo absorption sections calculated with the gamma force functions included in RIPL		
(Reference Library of input parameters) in the case of actinides		
4) Modeling of the emission of prompt neutrons and prompt		
gamma quanta in nuclear fission		
5) Investigating mass, charge, and kinetic energy distributions		
for fission fragments and initial nucle-ar fission products		
6) The study of the periodicity of the nuclear prop-erties of		
radionuclide		
7) Even-odd effects in nuclear fission These re-search topics		
require high-performance computing equipment (computer		
network and possibilities to store and access nuclear databases).		
They can be provided by the computing laboratories of the		
department.		
(Coordinator: Conf.univ.dr. Vasile BERCU)		4 Hours
8) The study of free radicals generated by ionizing radiation		
9) Studies in archaeophysics		
10) Studies of paramagnetic ions in different systems of opto-		
electronic interest		

(Coordinator: Conf.univ.dr. Oana RISTEA) 11) Study of radiation interaction with matter using GEANT4 12) Analysis of the constructive parameters of segmented electromagnetic calorimeters using GEANT4 13) Study of Coulomb interaction in relativistic nuclear collisions 14) Determination of thermal freezing parameters from the analysis of transverse momentum spectra using the "blast-wave" model 15) Analysis of chemical freezing parameters using THERMUS model 16) Investigating the properties of hot, dense nuclear matter in relativistic nuclear collisions in the BRAHMS and CBM	4 Hours
experiments 17) Conditions for formation and experimental signals of phases and phase transitions in hot dense nuclear matter 18) Experimental methods in nuclear physics, elementary particle physics and astroparticle physics	
(Coordinator: Lect.univ.dr. Marius CĂLIN) 19) Obtaining dosimetric maps of the areas in Bucharest located in the vicinity of the CETs 20) The influence of the radiation dose absorbed by some seeds on their further evolution 21) Analysis by high-resolution gamma spectroscopy of some environmental samples (soil, vegetation, surface water) 22) Determination of the radon concentration in the buildings and its dependence on the age, the degree of damage, the structure of the walls (brick, concrete, wood), position on the city map, the degree of ventilation of the rooms 23) Application of simulation codes (FLUKA) to obtain a map of doses possibly present around given radioactive sources (emitting only one type of radiation or several types) 24) Using simulation codes for various experiments in Nuclear Physics, Particle Physics and Astroparticle Physics 25) Nuclear archaeology	4 Hours
(Coordinator: Lect. Dr. Mihaela PÂRVU, Prof. Dr. Ionel LAZANU) 26) Radioactive background studies in underground experiments for rare processes 27) Studies related to transient processes at the interactions of incident particles (neutrinos, muons, mesons) in materials used as detectors in particle and astroparticle physics (gaseous, liquid and solid argon, xenon, semiconductors) 28) Mechanisms of production of the isotope Ar-39 in Ar-40 29) Physics of solar neutrinos and neutrinos from supernovae 30) Physical processes and reaction channels for leptons above/beyond the Standard Model 31) Using passive detectors in radioactive background determinations	4 Hours

(Coordinator: Lect.univ.dr. Alecsandru Vladimir CHIROŞCA) 32) Dosimetry and radiation detection; modeling of detection parameters for all types of radiation 33) Neutron dosimetry and applications 34) Radiation transport modeling using the GEANT and Fluka codes 35) Dosimetry in radiation therapy at linear accelerators (GEANT, Gamos) 36) Statistical data processing (Python, ROOT) 37) Microcontrollers and IoT 38) The use of artificial intelligence systems in data processing 39) Modeling of radiation field production processes in high power lasers (1PW). Numerical modeling and PIC (Particle In Cell)	3 Hours
(Coordinator: Lect. dr. Radu Alin VASILACHE) 40) Measuring doses in Ultra High Dose Rate (UHDR) beams.	4 Hours
Recombination measurements in ion chambers and models for	
the recombination at UHDR	
41) Space dosimetry. Detectors for dose measurements in	
complex radiation fields similar to the interplanetary galactiv	
cosmic radiation	
42) Internal dosimetry using whole body counters. Design of	
novel whole body counters	
43) OSL dosimetry for personnel and area measurements. The	
design of the algorithms for complex field dosimetry using	
BeOSL dosimeters	
44) High and medium resolution systems for the assay and sorting	
of radioactive waste. The design of automated systems for	
radioactive waste measurements	
45) High resolution gamma spectroscopy for TL and OSL dating.	
The determination of annual doses in various soil samples.	

It is established by the internship coordinator, in accordance with the field of activity and the chosen topics.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (University of Oxford https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, University of Padua, http://en.didattica.unipd.it/didattica/2015/SC1158/2014). The content of the discipline is according to the requirements for employment in research institutes in physics and materials science and in education (under the law).

9. Assessment

7				
Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	

Minimal requirements for passing the exam

Minimal requirements for passing the exam Requirements for mark 5 (10 points scale)

• Mandatory attendance at all research activities

Requirements for mark 10 (10 points scale)

Experimental skills, well-argued knowledge and corect use of specific experimental techniques

- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation

Date, Teacher's

name and signature,

13.07.2025 Conf. dr. Oana Ristea, Lect. d

Mihaela Parvu

Practicals/Tutorials/Project instructor(s),

name and signature

Conf. dr. Oana Ristea, Lect. dr. Mihaela

Parvu

Date of approval

15.07.2025

Head of department

name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.108 Radiation sources, dosimetry, and radiological protection

1. Study program

V 1 O		
1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

2.1. Course unit title	Radiation sources, dosimetry, and radiological protection
2.2. Teacher	Lect. Dr. Marius CĂLIN
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Marius CĂLIN
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS

3. Total estimated time

3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
for study				
course notes	, manuals, lectur	e notes, bib	liography	67
Research in library, study of electronic resources, field research			33	
Preparation for practicals/tutorials/projects/reports/homework				33
				0
				0
3.7. Total hours of individual study			133	
				175
				7
	for study course notes electronic res rials/project	42 3.5. Lectures for study course notes, manuals, lectur lectronic resources, field resorials/projects/reports/homew	42 3.5. Lectures 28 c for study course notes, manuals, lecture notes, bib electronic resources, field research rials/projects/reports/homework	42 3.5. Lectures 28 3.6. Tutorials/Practicals/Projects for study course notes, manuals, lecture notes, bibliography electronic resources, field research rials/projects/reports/homework

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical analysis, Algebra, Geometry, The equations of mathematical physics, Electricity,
	Atomic Physics, Nuclear Physics, Optics, Quantum Physics, Statistical Physics
4.2. competences Programming languages, Processing of physical data and numerical methods	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall (preferred, but not mandatory, multimedia equipment)		
5.2. for tutorials/practicals	The experimental modules from the Nuclear Physics Laboratory, the Dosimetry		
	Laboratory, the Computer Network (or individual laptops)		

o. Learning outcomes		
Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,	
	including theoretical models, methods, and experimental techniques.	
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating	
	principles of the main classes of detectors, and their applications in technological and medical	
	fields.	
	R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles	
	and rules of radiological protection.	
	R5. The student/graduate has advanced knowledge of the behavior of radionuclides in the	
	environment, as well as of the natural and anthropogenic processes that influence environmental	
	radioactivity.	
	R7. The student/graduate knows the operating principles and applications of specialized software	
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.	
	R11. The student/graduate should know the principles of communication and collaboration in	
	multidisciplinary teams and the hierarchical structure specific to organizations.	

nergy,
n, and
arious
itions,
,
active
nental
s and
ues in
ysics,
y 51C5,
me in
norms
taking
8
grams,
open-
ues in
ues in

7.1 Lecture [chapters]	Teaching techniques	Observations
Nuclear radiation Radiation field and radiation sources Summary	Systematic exposition -	4 Hours
of the main	lecture. Examples	
mechanisms of interaction of radiation with matter (interactions		
with atomic		
electrons, with the nucleus, with the nuclear field):		
a) charged particles: excitation, ionization, radiative energy loss		
- comparative analysis between heavy and light charged particles;		
b) neutron interactions;		
c) photon interactions: Rayleigh, Thomson, Compton scattering,		
photoelectric effect,		
pair production		
Characteristic quantities: energy loss per unit range, range, LET,		
Bragg		
curve, X-ray and gamma attenuation: linear and mass attenuation		
coefficient		
Radiation detection Principles of radiation protection; Specific	Systematic exposition -	14 Hours
aspects of shielding.	lecture. Examples Case	
Quantities and dosimetric units for radiation protection	studies	
(KERMA, absorbed dose, exposure, dose equivalent, effective		
dose)		

Applications:	Systematic exposition -	10 Hours
a) Biological effects of radiation; in vivo and in vitro dose	lecture. Examples	
response; clustered destructions		
b) Principles of methods of investigation and treatment with		
radiation		
c) Dosimetry at high energy accelerators and space missions		

- 1) G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 2) W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 3) Daniel Cussol, Nuclear Physics and Hadrontherapy,
- 4) Malte C. Frese s.al., Int J Radiation Oncol. Biol. Phys, Vol. 83, No. 1, pp. 442e450, 2012
- 5) IAEA-TECDOC-1560, Dose Reporting in Ion Beam Therapy, 2007
- 6) IAEA, Jointly sponsored by the IAEA and ICRU Technical Reports Series 461
- 7) M. Oncescu, Dozimetria și ecranarea radiațiilor Roentgen și gamma, Ed. Academiei, 1992
- 8) T. Angelescu s. al., 177 de probleme de dozimetrie, Ed. Ars Docendi
- 9) A. Jipa, M. Călin, A. Chiroşca, Probleme de dozimetrie, surse de radiații și radioprotecție versiune electronică

7.3 Practicals	Teaching techniques	Observations
Types of dosimeters used for charged particles and neutrons	Guided practical work	4 Hours
Studies for the range of charged particles in different environments	Guided practical work	2 Hours
Solving problems and numerical applications	Solving problems	8 Hours
Defense		

References:

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in physics and modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is in accordance with the employment requirements in research institutes in nuclear physics and engineering and medical laboratories that use nuclear methods in investigation and treatment (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
presentation; - Correct use of calculation models, formulas and		oral examination	70%
	relationships; - The ability to exemplify; - In-depth application of knowledge		
Practical - Knowledge and use of experimental techniques; - Interpretation of the results;		Laboratory colloquim	30%
Minimal	Requirements for mark 5 (10 points scale)		
requirements	Performing all practical activities during the semester		
for passing			e and the exam,
the exam in accordance with the specified weight			

Date, Teacher's

name and signature,

13.07.2025 Lect. Dr. Marius CĂLIN

Practicals/Tutorials/Project instructor(s),

name and signature

Lect. Dr. Marius CĂLIN

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026 DI.109 Medical and Nuclear Electronics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Medical and Nuclear Electronics
2.2. Teacher	Lect. Dr. Radu Alin Vasilache
2.3. Tutorials/Practicals instructor(s) Lect. Dr. Radu Alin Vasilache	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study		1		
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of electronic resources, field research				33	
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				133	
3.8. Total hours per semester			175		
3.9. ECTS				7	

4. Prerequisites (if necessary)

4.1. curriculum	Study of the course Interactions of the ionizing particles with matter Interacțiile radiațiilor
	ionizante cu materia, Methods of Detection, Special Relativity Theory, Quantum Physics
4.2. competences	Knowledge on the use of nuclear apparatus, data analysis and processing, identifying sources of
	information

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Digital videoprojector / HD display
5.2. for tutorials/practicals	Laboratory apparatus: HV sources, signal generators, oscilloscopes, electrometers,
	multichannel analyzers, photomultiplier assembly, NIM amplifiers, NIM timer / scaler,
	NIM SCA, NIM Bin, computer.

6. Learning outcomes

Knowledge	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating principles of the main classes of detectors, and their applications in technological and medical fields.
Skills	R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research).
Responsibility and autonomy	R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives.

7.1 Lecture [chapters] Teachin	ng techniques	Observations
--------------------------------	---------------	--------------

Particle accelerators for nuclear and mecial physics. Overview of the development of accelerators. The direct voltage accelerator. Cockroft - walton cascade generator, Marx generator, Van de Graaf accelerator. general principles of LINAC, cyclotron, microtron, betatron and synchrotron	Systematic exposition. Lecture. Examples	4 Hours
The LINAC and its medical applications. Principles of electron acceleration. waves and modes in guides and cavities. Electron buunching. Microwave generation and transmission. Electron sources. Beam transport and beam optics. Beam shaping, Beam monitors and dosimetry controlsystems. properties of LINAC beams. Ancillary systems.	Systematic exposition. Lecture. Examples	6 Hours
Proton and heavy ion accelerators and their medical applications. Circular accelerators for proton therapy: the cyclotron and the sychrocyclotron, the DWAs. Types of accelerators for heavy ion therapy: synchrotrons and cyclotrons for carbon ion therapy. Linacs for carbon-ion therapy. New developments for particle therapy: laser based accelerators and fixed field alternating gradient particle accelerators. Beam extraction. Beam transport.	Systematic exposition. Lecture. Examples	4 Hours
Dosimetry for particle accelerators. Ionisation chambers: physical and operational principles. Types of chambers. Electrometers, cables and connectors. Determination of charge produced in the chamber. Correction factors to be considered for the measurements. Solid state detectors: diode and MOSFET detectors. Diamond detectors. Equipment for 2D and 3D dosimetry. Equipment for absolute and relative dosimetry.	Systematic exposition. Lecture. Examples	4 Hours
The cyclotron accelerator and its use in medical isotope production. Principles of cyclotron operation. Types of cyclotrons used in medical isotope production. Targets. Ancillary equipment: hot cells and dispensers	Systematic exposition. Lecture. Examples	2 Hours
Equipment for medical diagnostic imaging. SPECT imaging: principles and equipment. PET imaging: principles and equipment. Computed tomography scanners. Equipment for hot rooms.	Systematic exposition. Lecture. Examples	4 Hours
Electronic instrumentation for calorimetric measurements in particle physics. Front-end signal electronics. Trigger processors. Timing electronics and time measurement. Multichannel scaler and multichannel analysers for energy measurements and time stamp measurements. Operation in magnetic fields. Radiation damage for detectors and electronics.	Systematic exposition. Lecture. Examples	2 Hours
Amplification and processing of analog signals. Preamplifiers and amplifiers for nuclear physics. Filtering. Pile-up effects. Fast amplifiers. Pulse formation. Coincidence circuits and time – amplitude analysis circuits.	Systematic exposition. Lecture. Examples	2 Hours

- 1. Edmund Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2006.
- 2. Klaus Wille, The Physics of Particle Accelerators, Oxford University Press, 2005
- 3. W. P. Mayles, A. E. Nahum, J. C. Rosenwald (eds.), Handbook of Radiotherapy Physics, CRC Press, 2022
- 4. E. B. Podgorsak (ed.), Radiation Oncology Physics: A Handbook for Teachers and Students, International Atomic Energy Agency, 2005
- 5. J.-J. Samueli, J. Pigneret, A. Sarazin, Instrumentația electronică în fizica nucleară (Măsurări de timp și energie), Ed. Tehnică București, 1972
- 6. Richard Wigman, Calorimetry. Energy Measurements in Particle Physics, Oxford University Press 2008

7.3 Practicals	Teaching techniques Observ		Observations
Electronic circuits for analog signal processing.	Theoretical exercises and		2 Hours
	practical activity		

Digital instrumentation for gamma spectroscopy	Theoretical exercises and	2 Hours
	practical activity	
Photomultiplier tubes	Theoretical exercises and	2 Hours
	practical activity	
Measurement of charge with different types of circuits and	Theoretical exercises and	2 Hours
detectors	practical activity	
Ion chambers and electrometers for radiotherapy	Theoretical exercises and	2 Hours
	practical activity	
Electrical and radiological safety measures. The physiological	Lecture. Examples.	2 Hours
effects of ionising radiation and electric shocks. Methods of	Theoretical exercises.	
protection against exposure radiation and against electric shocks.		
The NIM and VME standards	Lecture. Examples.	2 Hours
	Theoretical exercises.	

- 1. E. B. Podgorsak (ed.), Radiation Oncology Physics: A Handbook for Teachers and Students, International Atomic Energy Agency, 2005
- J.-J. Samueli, J. Pigneret, A. Sarazin, Instrumentația electronică în fizica nucleară (Măsurări de timp şi energie), Ed. Tehnică Bucureşti, 1972

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in medicine and medical research, the professors of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Oxford University, International Atomic Energy Agency, European Federation of Organisations for Medical Physics, European Association for Nuclear Medicine, etc.). The content of the discipline is in accordance with the requirements for employment in research institutes and medical physics (radiotherapy and nuclear medicine) laboratories.

9. Assessment

J. Assessin			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of exposition	Oral exam and assessment	70%
	- Correct use of the methods / physical models		
	- The ability to give specific examples		
Practical	- Knowledge and use of experimental techniques	Laboratory colloquium	30%
	- Interpretation of the results		
	- Problem solving		
Minimal	Completion of all laboratory work and grade 5 in th	ne laboratory and tutorials colloquiu	ım
requirements	The correct exposure of the indicated subjects at least at qualitative level to obtain a score of 5 in the		
for passing	final exam.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Radu Alin Vasilache Lect. Dr. Radu Alin Vasilache

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.201 Relativistic nuclear Physics. Anomal states and phase transitions in nuclear matter

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2. Course unit	
2.1. Course unit title	Relativistic nuclear Physics. Anomal states and phase transitions in
	nuclear matter
2.2. Teacher	Conf. dr. Oana Ristea
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
	7			9	
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester			200		
3.9. ECTS			8		

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics and Elementary Particles, Astrophysics, Quantum mechanics and quantum		
	physics, Thermodynamics and statistical physics, Electrodynamics and relativity theory,		
	Experimental methods in nuclear physics		
4.2. competences	Knowledge of mathematics, programming languages and numerical methods, use of simulation		
	codes and software tools for data analysis/processing		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Computers Software for fitting experimental data and graphics (Minuit, origin,
	grafmatica) Different simulation codes (HIJING, AMPT, GEANT, UrQMD, PITHYA
	etc.) Films obtained in 2m streamer chamber at JINR-Dubna Experimental database
	of the BRAHMS collaboration from RHIC-BNL Database of CBM Collaboration from
	FAIR-GSI

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R3. The student/graduate knows and understands the operating principles and applicability of
	fundamental equipment used in each subfield of atomic and nuclear physics.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,
	astrophysics, and cosmology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R7. The student/graduate uses computing codes or software packages for research topics and
	specific applications.
	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.
Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,
and autonomy	acting autonomously and responsibly in decision-making.
	R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest.
	R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.
	R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community.

7. Contents	Too shing to shuigues	Obsamustians
7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction to Relativistic Nuclear Physics. Definitions. Terms	Systematic exposition	4 Hours
appearance, development stages, specific physical quantities	- lecture. Heuristic	
Experimental methods in relativistic nuclear physics. Accelerator	conversation. Critical	
systems, detection systems. Large laboratories and major	analysis. Examples	
experiments		
Physical quantities with dynamic significance. Participants	Systematic exposition -	4 Hours
-spectators picture. Rapidity and pseudorapidity, associated	lecture. Examples	
distributions and physical significance, multiplicities and		
multiplicity distributions, associated moments, cross sections,		
nucleon participants, momentum spectra and energy spectra,		
angular distributions, spatial and temporal characteristics of the		
particle source. Evolution of a relativistic nuclear collisions,		
evolution stages, observables, parameters.		
Modeling the dynamics of relativistic nuclear collisions. The	Systematic exposition	4 Hours
complexity of interactions and diversity of concepts. The need	- lecture. Heuristic	
for modeling and ranking models. Classic models. Models	conversation. Critical	
based on Vlasov equation, Vlasov - Uenling - Uhlenbeck	analysis. Examples	
equation and Boltzmann equation. Intranuclear cascade models.		
Thermodynamic models. Hydrodynamic models. Hybrid models		
etc		
Conditions for the formation of anomalous states of matter and	Systematic exposition	4 Hours
for the occurrence of phase transitions in nuclear matter. Types	- lecture. Heuristic	
of anomalous states of matter and types of nuclear matter phases.	conversation. Examples	
The phase diagram of nuclear matter. Phase transition to the	•	
quark-gluon plasma (quarks and gluons properties, asymptotic		
freedom, the interaction potential between quarks). QCD lattice.		
Connections with cosmological processes. Big Bang. Evolution	Systematic exposition –	2 Hours
scenarios. Evolution stages retrievable through relativistic	lecture. Critical analysis.	
nuclear collisions. Quark gluon plasma and hadronization	Examples	
process.		

Experimental signals of quark-gluon plasma production.	Systematic exposition – 2 Hours
Suppression of high transverse momentum particles. Parton	lecture. Critical analysis.
distribution functions. Fragmentation functions. Nuclear effects	Examples
(initial and final state effects). Experimental results.	
Production of heavy quarks (quarkonia). The interaction potential	Systematic exposition – 2 Hours
between two quarks. Debye shielding. Sequential suppression	lecture. Critical analysis.
of heavy quark bound states in the quark-gluon plasma and	Examples
recombination process. Nuclear effects. Experimental results.	
Electromagnetic signals. Production of photons and dileptons.	Systematic exposition – 4 Hours
Strangeness production	lecture. Critical analysis.
Collective flow (anisotropic flow and transverse)	Examples
Experimental results obtained in nuclear collisions at relativistic	Systematic exposition – 2 Hours
and ultrarelativistic energies. Multiplicities and multiplicity	lecture. Critical analysis.
distributions. Impact parameter and collision centrality. Glauber	Examples
model. Rapidity and rapidity distributions. The Landau	
vs Bjorken models. Estimate of energy density based on	
Bjorken model. Chemical freeze-out stage. Experimental	
parameters. Statistical models. Kinetic (thermal) freeze-out	
stage. Experimental parameters. Blast-wave model.	

- 1. A Das and T. Ferbel, Introduction to Nuclear and Particle Physics, World Scientific, Second edition, 2005
- 2. Ray Hagedorn Relativistic Kynematics, Academic Press, 1968
- 3. B.R.Martin Statistics for Physicists, Plenum Press, 1971
- 4. C. Wong Relativistic Heavy Ion Collisions, World Scientific, 1996
- 5. Ramona Vogt Ultrarelativistic Heavy Ion Collisions, Elsevier Publishing, 2007
- 6. Al.Jipa, C.Beşliu Elemente de Fizică nucleară relativistă. Note de curs, Editura Universității din București, 2002
- 7. C.Beşliu, Al.Jipa Elemente de Fizică nucleară relativistă. Note de seminar și îndrumător de laborator, Editura Universității din București, 1999
- 8. Al.Jipa Culegere de probleme de Fizică nucleară relativistă (formă electronică)
- 9. The Physics of the Quark-Gluon Plasma, S. Sarkar et all, Springer Verlag, 2010
- 10. Quark-Gluon Plasma 3, R. C. Hwa, X. N. Wang, World Scientific, 2004

7.3 Practicals	Teaching techniques	Observations
Study of the rapidity/pseudorapidity and rapidity/pseudorapidity	Guided practical work	4 Hours
distributions for different nucleus-nucleus collisions at relativistic		
and ultrarelativistic energies		
Determination of multiplicities and multiplicity distributions	Guided practical work	4 Hours
in different nucleus-nucleus collisions at relativistic and		
ultrarelativistic energies		
Determination of the number of participating nucleons	Guided practical work	2 Hours
from various nucleus-nucleus collisions at relativistic and		
ultrarelativistic energies		
Determination of apparent temperature from the analysis of	Guided practical work	4 Hours
transverse momentum spectra of produced particles in the		
collisions		
Determination of flow velocities and freeze-out temperatures	Guided practical work	2 Hours
using the blast wave model		
Study of the anisotropic flow coefficients (v2,v3) în simulated	Guided practical work	4 Hours
heavy-ion collisions		
Study of the Coulomb interaction în relativistic heavy-ion	Guided practical work	2 Hours
collisions using the pion ratios		
Relativistic kinematics notions.	Guided practical work	6 Hours
Solving specific problems		

Al.Jipa – Culegere de probleme de Fizică nucleară relativistă (formă electronică) https://root.cern.ch/

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit forms/develops some theoretical and/or practical competences and abilities which are important/fundamental/something else for a graduate student in the field of modern Physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union străinătate (University of Oxford

https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, Universityof Parma

http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, Universitatea Padova, http://en.didattica.unipd.it/didattica/2015/SC1158/2014). The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, secondary school teaching).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
	final:		final mark
Lecture	- coherence and clarity of exposition	Oral examination	70%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyse specific examples		
Practical	- ability to analyse the experimental and simulation	Lab reports	30%
	codes results		
	- data processing and analysis		
	- ability to present and discuss the results		
	- ability to use specific problem solving methods		
	- correct use of physical methods/models		
Minimal	Requirements for mark 5 (10 points scale)		
requirements	Basic notions from the course content, meeting the requirements of the laboratory and verification of		
for passing	learning laboratory requirements		
the exam			
	Requirements for mark 10 (10 points scale)		
	Good knowledge of all the topics from the course content		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
13.07.2025 Conf. dr. Oana Ristea Conf. dr. Oana Ristea

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.202 Elementary particles phenomenology. Elements of Cosmology and astroparticle Physics.

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2. Course and	
2.1. Course unit title	Elementary particles phenomenology. Elements of Cosmology and
	astroparticle Physics.
2.2. Teacher	Mihaela Parvu, Oana Ristea
2.3. Tutorials/Practicals instructor(s)	Mihaela Parvu, Oana Ristea
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	72
Research in library, study of el	ectronic res	ources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS					8

4. Prerequisites (if necessary)

4.1. curriculum	Higher mathematics, Quantum mechanics, Statistical physics, Atomic physics, Nuclear physics
	and elementary particles
4.2. competences	Programming languages, Physical data processing and numerical methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (preferably, but not required, multimedia facilities)	
5.2. for tutorials/practicals	Experimental setups from Nuclear Physics Laboratory, Dosimetry Laboratory, Computer	
	Network (or individual laptops) Films obtained in the 81 cm bubble chamber / CERN	
	exposed to a beam of pion- of 2.2 GeV / c at the accelerator of 28GeV Films obtained	
	at the 2 m bubble chamber / CERN filled with hydrogen Films obtained at high pressure	
	chamber - JINR-Dubna, filled with 3He exposed to pions + / _ beams at kinetic energies	
	of 100, 120, 145 and 180 MeV Measurements of galaxies obtained with the radio	
	telescope of Univ. Seattle and their emission and / or absorption spectra in visible	

Knowledge	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating principles of the main classes of detectors, and their applications in technological and medical fields. R3. The student/graduate knows and understands the operating principles and applicability of fundamental equipment used in each subfield of atomic and nuclear physics. R6. The student/graduate understands the fundamental concepts of modern cosmology and astrophysics, including the structure and evolution of the Universe, galaxy formation, and primordial nucleosynthesis. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
Skills	R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R6. The student/graduate analyzes and interprets data from observations and numerical simulations, using theoretical models to describe cosmological and astrophysical phenomena. R7. The student/graduate uses computing codes or software packages for research topics and specific applications.
Responsibility and autonomy	R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R6. The student/graduate demonstrates initiative and autonomy in exploring topics in cosmology and astrophysics, contributing to research or science outreach activities, and integrating acquired knowledge in interdisciplinary contexts. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of opensource code development.

7.1 Lecture [chapters]	Teaching techniques	Observations
Elements of relativistic kinematics	Systematic exposition	4 Hours
Properties and interactions of elementary particles: Forces,	- lecture. Heuristic	
Elementary particles, Introduction of the antiparticle concept,	conversation. Critical	
Quantum numbers (baryon number, lepton numbers, strangeness,	analysis. Examples	
isospin; other specific tasks), Gell-Mann Nishijima relation,		
Production and disintegration of resonances, Spin determination,		
Violations of quantum numbers		
Symmetries: Phenomenological aspects, Fundamentals of the	Systematic exposition	4 Hours
quark model, Quarks content for mesons and baryons. Color,	- lecture. Heuristic	
color symmetry, extension of the quark pattern. The hidden	conversation. Critical	
symmetries. Experimental confirmations. Discrete symmetries.	analysis. Examples	

Formulation of the standard model: The fundamental constituents: quarks, gluons, leptons; The concepts of valence quarks and "sea quarks" for hadrons. Mechanisms. Gauge. Dynamics of gauge particles. Spontaneous breaking of symmetry Comparison of the standard model with the experimental data. Physics beyond the standard model. Reproduction of the conditions of the Universe in the early Universe of the big explosion (big-bang). New acceleration facilities	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	6 Hours
The expansionist universe:	Systematic exposition	4 Hours
Observational aspects about the Universe, Newtonian	- lecture. Heuristic	
Cosmology, Elements of curvilinear geometry.	conversation. Critical	
	analysis. Examples	
Einstein's Equations, Cosmic Dynamics, Elements of Primordial	Systematic exposition	7 Hours
Nucleosynthesis, Phase Transitions in the Early Universe. Planck	- lecture. Heuristic	
era.	conversation. Critical	
Estimates of cosmic parameters. Scenarios of phase transitions.	analysis. Examples	
Baryogenesis and asymmetry of matter-antimatter for the universe. Other aspects.		
Cosmic particles: Neutrinos. Gravitational waves (Detection;	Systematic exposition	3 Hours
experiments). Classic black holes and quantum aspects. Hawking	- lecture. Heuristic	3 110ui 8
radiation.	conversation. Critical	
Dark matter and dark energy of the universe: Sources of dark	analysis. Examples	
matter. Searches, experiments, results. New ideas	anarysis. Examples	

Bibliography:

F.E. Close An introduction to quarks and partons, Academic Press 1979

A. Das, T. Ferbel, Introduction to nuclear and particle physics, World Scientic 2005

D. Griffits, Introduction to elementary particles, JohnWilley and Sons 1987

K. Gottfried, V. Weisskopf, Subnuclear Phenomena (in Concepts of Particle Physics), Oxford University Press 1984

I. Lazanu, Paricule elementare, astroparticule si elemente ale universului timpuriu (aplicatii numerice si probleme rezolvate), Ed. Univ. din Bucuresti 2002

Ray Hagedorn - Relativistic Kynematics, Academic Press, 1968

B.R.Martin - Statistics for Physicists, Plenum Press, 1971

Claus Grupen, Astroparticle Physics, Springer 2005

R. D. Peccei - Physics at the interface of particle physics and cosmology – hep-ph/9808418

Ian R. Kenyon - General relativity, Oxford Univ. Press 1990

Donald Perkins - Particle Astrophysics (Oxford Master Series in Particle Physics, Astrophysics, and Cosmology), Oxford Univ. Press 2005

I. Lazanu – Cosmologie si particule elementare, Ed. Univ. din Bucuresti 1999

7.2 Tutorials	Teaching techniques	Observations
Problems in elementary particle physics	Guided work. Exercises	6 Hours
Numerical application sin cosmology; discussions		
Experimental determination of some properties of elementary	Guided work. Exercises	4 Hours
particles (electrical charge, mass, impulse, energy, life time),		
identification, fundamental interactions		
Analysis and interpretation of data with the technique of Dalitz	Guided work. Exercises	2 Hours
diagrams and establishment of quantum numbers based on		
theoretical considerations.		
Interference of resonances. Theoretical and numerical study	Guided work. Exercises	4 Hours

Investigation of Hubble's law using real galaxy measurements	Guided work. Exercises	6 Hours
with 2-4 m telescopes and emission / absorption spectra for		
several elements and estimating the age of the Universe.		
Numerical programming of the neutrino oscillation phenomenon	Guided work. Exercises	4 Hours
for different distance bases		
Determination of the mass of neutrinos from the experimental	Guided work. Exercises	2 Hours
data obtained from the supernova 1987A		

I. Lazanu, Particule elementare, astroparticule si elemente ale universului timpuriu (aplicatii numerice si probleme rezolvate), Ed. Univ. din Bucuresti 2002

Ray Hagedorn - Relativistic Kynematics, Academic Press, 1968

B.R.Martin - Statistics for Physicists, Plenum Press, 1971

Claus Grupen, Astroparticle Physics, Springer 2005

Ian R. Kenyon - General relativity, Oxford Univ. Press 1990

Donald Perkins - Particle Astrophysics (Oxford Master Series in Particle Physics, Astrophysics, and Cosmology), Oxford Univ. Press 2005

I. Lazanu - Cosmologie si particule elementare, Ed. Univ. din Bucuresti 1999

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Heidelberg, University of Cambridge, University of Cambridge Gent, Laussane). The content of the discipline is according to the requirements of employment in research institutes in nuclear physics and engineering, medical laboratories that use nuclear methods in investigation and treatment (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Writen examination	70%
Tutorial	ability to use specific problem solving methodsability to analyse the results	Homeworks/writen tests	30%
Minimal requirements for passing the exam	Correct understanding of the concepts and pheno accurate numerical results on topics imposed. Requirements for mark 5 (10 points scale) - Carrying out all the activities during the semester - Obtaining note 5 by summing the points obtained a according to the weights specified		

Date, Teacher's

name and signature,

13.07.2025 Mihaela Parvu, Oana Ristea

Practicals/Tutorials/Project instructor(s),

name and signature

Mihaela Parvu, Oana Ristea

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026 DI.206 Research activity practice

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Research activity practice			
2.2. Teacher	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu			
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu			
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation project assessment 2.7. Classification DA			

3. Total estimated time

3.1. Hours per week	6	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/6/0
				9	
3.4. Total hours per semester	60	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/60/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	158
Research in library, study of electronic resources, field research					79
Preparation for practicals/tutorials/projects/reports/homework				78	
Tutorat				0	
Other activities					0
3.7. Total hours of individual study				315	
3.8. Total hours per semester				375	
3.9. ECTS					15

4. Prerequisites (if necessary)

	· • · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Completion of courses from the first and second year curriculum
4.2. competences	Knowledge of mathematics, physics, programming languages and numerical methods

5. Conditions/Infrastructure (if necessary)

or conditions, initiable details (in necessary)	
5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology. R10. The student/graduate should know the norms and ethical principles regarding scientific research in the field, as well as develop a culture of responsibility in intellectual work. R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field. R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field. R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

Responsibility	R8. The student/graduate participates actively and responsibly in international projects, respecting
and autonomy	the scientific, ethical, and collaborative standards of the fundamental physics research community.
	R10. The student/graduate should demonstrate solidarity, responsiveness, and support for
	strengthening academic integrity.
	R11. The student/graduate should apply effective communication and coordination techniques in
	diverse teams, managing tasks and professional relationships at various hierarchical levels.

7.3 Practicals	Teaching techniques	Observations
In accordance with the research topic chosen for the practice.		4 Hours
The topics will lead to the definition of dissertation topics in		
accordance with the existing proposals.		
Research topics (theoretical and experimental approaches		8 Hours
specific to the fields of atomic and nuclear physics):		
(Coordinator: Prof.univ.dr. Mihaela SIN, Dr. Dan Mihai		
Filipescu)		
1) Calculation of cross sections for neutron-induced reactions on		
plutonium isotopes (238Pu-242Pu) in the energy range 10 keV –		
30 MeV		
2) Calculation of the photo-fission cross sections for 230Th,		
232Th in the energy range 3 - 30 MeV		
3) Comparative analysis of the photo absorption sections		
calculated with the gamma force functions included in RIPL		
(Reference Library of input parameters) in the case of actinides		
4) Modeling of the emission of prompt neutrons and prompt		
gamma quanta in nuclear fission		
5) Investigating mass, charge, and kinetic energy distributions		
for fission fragments and initial nucle-ar fission products		
6) The study of the periodicity of the nuclear prop-erties of radionuclide		
7) Even-odd effects in nuclear fission These re-search topics		
require high-performance computing equipment (computer		
network and possibilities to store and access nuclear databases).		
They can be provided by the computing laboratories of the		
department.		
(Coordinator: Conf.univ.dr. Vasile BERCU)		8 Hours
8) The study of free radicals generated by ionizing radiation		
9) Studies in archaeophysics		
10) Studies of paramagnetic ions in different systems of opto-		
electronic interest		

(Coordinator: Conf.univ.dr. Oana RISTEA) 11) Study of radiation interaction with matter using GEANT4 12) Analysis of the constructive parameters of segmented electromagnetic calorimeters using GEANT4 13) Study of Coulomb interaction in relativistic nuclear collisions 14) Determination of thermal freezing parameters from the analysis of transverse momentum spectra using the "blast-wave" model 15) Analysis of chemical freezing parameters using THERMUS model 16) Investigating the properties of hot, dense nuclear matter in relativistic nuclear collisions in the BRAHMS and CBM experiments 17) Conditions for formation and experimental signals of phases	8 Hours
and phase transitions in hot dense nuclear matter 18) Experimental methods in nuclear physics, elementary particle	
physics and astroparticle physics	
(Coordinator: Lect.univ.dr. Marius CĂLIN) 19) Obtaining dosimetric maps of the areas in Bucharest located in the vicinity of the CETs	8 Hours
20) The influence of the radiation dose absorbed by some seeds on their further evolution	
21) Analysis by high-resolution gamma spectroscopy of some environmental samples (soil, vegetation, surface water)	
22) Determination of the radon concentration in the buildings and its dependence on the age, the degree of damage, the structure of	
the walls (brick, concrete, wood), position on the city map, the degree of ventilation of the rooms	
23) Application of simulation codes (FLUKA) to obtain a map of doses possibly present around given radioactive sources (emitting only one type of radiation or several types)	
24) Using simulation codes for various experiments in Nuclear Physics, Particle Physics and Astroparticle Physics 25) Nuclear archaeology	
(Coordinator: Lect. Dr. Mihaela PÂRVU, Prof. Dr. Ionel LAZANU)	8 Hours
26) Radioactive background studies in underground experiments for rare processes	
27) Studies related to transient processes at the interactions of incident particles (neutrinos, muons, mesons) in materials used	
as detectors in particle and astroparticle physics (gaseous, liquid and solid argon, xenon, semiconductors)	
28) Mechanisms of production of the isotope Ar-39 in Ar-40 29) Physics of solar neutrinos and neutrinos from supernovae	
30) Physical processes and reaction channels for leptons above/beyond the Standard Model	
31) Using passive detectors in radioactive background determinations	

(Coordinator: Lect.univ.dr. Alecsandru Vladimir CHIROŞCA) 32) Dosimetry and radiation detection; modeling of detection parameters for all types of radiation 33) Neutron dosimetry and applications 34) Radiation transport modeling using the GEANT and Fluka codes 35) Dosimetry in radiation therapy at linear accelerators (GEANT, Gamos) 36) Statistical data processing (Python, ROOT) 37) Microcontrollers and IoT 38) The use of artificial intelligence systems in data processing 39) Modeling of radiation field production processes in high power lasers (1PW). Numerical modeling and PIC (Particle In Cell)	8 Hours
(Coordinator: Lect. dr. Radu Alin VASILACHE) 40) Measuring doses in Ultra High Dose Rate (UHDR) beams.	8 Hours
Recombination measurements in ion chambers and models for	
the recombination at UHDR	
41) Space dosimetry. Detectors for dose measurements in	
complex radiation fields similar to the interplanetary galactiv	
cosmic radiation	
42) Internal dosimetry using whole body counters. Design of	
novel whole body counters	
43) OSL dosimetry for personnel and area measurements. The	
design of the algorithms for complex field dosimetry using	
BeOSL dosimeters	
44) High and medium resolution systems for the assay and sorting	
of radioactive waste. The design of automated systems for	
radioactive waste measurements	
45) High resolution gamma spectroscopy for TL and OSL dating.	
The determination of annual doses in various soil samples.	
References:	

It is established by the internship coordinator, in accordance with the field of activity and the chosen topics.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (University of https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, University of Padua, http://en.didattica.unipd.it/didattica/2015/SC1158/2014). The content of the discipline is according to the requirements for employment in research institutes in physics and materials science and in education (under the law).

9. Assessm	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Practical	- Attendance	Verification/ Colloquium	100%
	- The application of specific methods of solving		
	the given problem;		
	- Interpretation of results;		
	- The clarity, coherence and brevity of the		
	exposition		
	- The correct use of models, formulas and relations		
	of calculation;		

Minimal requirements for passing the exam

Minimal requirements for passing the exam Requirements for mark 5 (10 points scale)

• Mandatory attendance at all research activities

Requirements for mark 10 (10 points scale)

Experimental skills, well-argued knowledge and corect use of specific experimental techniques

- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation

Date, Teacher's

name and signature,

13.07.2025 Conf. dr. Oana Ristea, Lect. d

Mihaela Parvu

Practicals/Tutorials/Project instructor(s),

name and signature

Conf. dr. Oana Ristea, Lect. dr. Mihaela

Parvu

Date of approval

15.07.2025

Head of department

name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.207 Research activity and Dissertation thesis preparation

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Research activity and Dissertation thesis preparation
2.2. Teacher	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea, Lect. dr. Mihaela Parvu
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation project assessment 2.7. Classification DA

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	4	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/4/0
3.4. Total hours per semester	40	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/40/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	s, manuals, lectur	e notes, bib	liography	43
Research in library, study of electronic resources, field research			21		
Preparation for practicals/tutorials/projects/reports/homework			21		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			85		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Completion of courses from the first and second year curriculum
4.2. competences	Knowledge of mathematics, physics, programming languages and numerical methods

5. Conditions/Infrastructure (if necessary)

ev Conditions, init assi actual (in incoessuity)	
5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology. R10. The student/graduate should know the norms and ethical principles regarding scientific research in the field, as well as develop a culture of responsibility in intellectual work. R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field. R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field. R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

Responsibility	R8. The student/graduate participates actively and responsibly in international projects, respecting
and autonomy	the scientific, ethical, and collaborative standards of the fundamental physics research community.
	R10. The student/graduate should demonstrate solidarity, responsiveness, and support for
	strengthening academic integrity.
	R11. The student/graduate should apply effective communication and coordination techniques in
	diverse teams, managing tasks and professional relationships at various hierarchical levels.

7.3 Practicals	Teaching techniques	Observations
In accordance with the research topic chosen for the dissertation.		1 Hour
Research topics		6 Hours
(Coordinator: Prof.univ.dr. Mihaela SIN, Dr. Dan Mihai Filipescu) 1) Calculation of cross sections for neutron-induced reactions on		
plutonium isotopes (238Pu-242Pu) in the energy range 10 keV – 30 MeV		
2) Calculation of the photo-fission cross sections for 230Th, 232Th in the energy range 3 - 30 MeV		
3) Comparative analysis of the photo absorption sections calculated with the gamma force functions included in RIPL		
(Reference Library of input parameters) in the case of actinides 4) Modeling of the emission of prompt neutrons and prompt gamma quanta in nuclear fission		
5) Investigating mass, charge, and kinetic energy distributions for fission fragments and initial nucle-ar fission products		
6) The study of the periodicity of the nuclear prop-erties of radionuclide		
7) Even-odd effects in nuclear fission These re-search topics require high-performance computing equipment (computer network and possibilities to store and access nuclear databases).		
They can be provided by the computing laboratories of the department.		
(Coordinator: Conf.univ.dr. Vasile BERCU) 8) The study of free radicals generated by ionizing radiation 9) Studies in archaeophysics		5 Hours
10) Studies of paramagnetic ions in different systems of opto- electronic interest		

(Coordinator: Conf.univ.dr. Oana RISTEA) 11) Study of radiation interaction with matter using GEANT4 12) Analysis of the constructive parameters of segmented electromagnetic calorimeters using GEANT4 13) Study of Coulomb interaction in relativistic nuclear collisions 14) Determination of thermal freezing parameters from the analysis of transverse momentum spectra using the "blast-wave" model 15) Analysis of chemical freezing parameters using THERMUS model 16) Investigating the properties of hot, dense nuclear matter in relativistic nuclear collisions in the BRAHMS and CBM experiments 17) Conditions for formation and experimental signals of phases and phase transitions in hot dense nuclear matter	5 Hours
18) Experimental methods in nuclear physics, elementary particle	
physics and astroparticle physics	
(Coordinator: Lect.univ.dr. Marius CĂLIN) 19) Obtaining dosimetric maps of the areas in Bucharest located in the vicinity of the CETs 20) The influence of the radiation dose absorbed by some seeds on their further evolution 21) Analysis by high-resolution gamma spectroscopy of some environmental samples (soil, vegetation, surface water) 22) Determination of the radon concentration in the buildings and its dependence on the age, the degree of damage, the structure of the walls (brick, concrete, wood), position on the city map, the degree of ventilation of the rooms 23) Application of simulation codes (FLUKA) to obtain a map of doses possibly present around given radioactive sources (emitting only one type of radiation or several types) 24) Using simulation codes for various experiments in Nuclear Physics, Particle Physics and Astroparticle Physics	6 Hours
25) Nuclear archaeology	
(Coordinator: Lect. Dr. Mihaela PÂRVU, Prof. Dr. Ionel LAZANU) 26) Radioactive background studies in underground experiments for rare processes 27) Studies related to transient processes at the interactions of incident particles (neutrinos, muons, mesons) in materials used as detectors in particle and astroparticle physics (gaseous, liquid and solid argon, xenon, semiconductors) 28) Mechanisms of production of the isotope Ar-39 in Ar-40 29) Physics of solar neutrinos and neutrinos from supernovae 30) Physical processes and reaction channels for leptons above/beyond the Standard Model 31) Using passive detectors in radioactive background determinations	6 Hours

(Coordinator: Lect.univ.dr. Alecsandru Vladimir CHIROŞCA) 32) Dosimetry and radiation detection; modeling of detection parameters for all types of radiation 33) Neutron dosimetry and applications 34) Radiation transport modeling using the GEANT and Fluka codes 35) Dosimetry in radiation therapy at linear accelerators (GEANT, Gamos) 36) Statistical data processing (Python, ROOT) 37) Microcontrollers and IoT 38) The use of artificial intelligence systems in data processing 39) Modeling of radiation field production processes in high power lasers (1PW). Numerical modeling and PIC (Particle In Cell)	5 Hours
(Coordinator: Lect. dr. Radu Alin VASILACHE) 40) Measuring doses in Ultra High Dose Rate (UHDR) beams.	6 Hours
Recombination measurements in ion chambers and models for	
the recombination at UHDR	
41) Space dosimetry. Detectors for dose measurements in	
complex radiation fields similar to the interplanetary galactiv	
cosmic radiation	
42) Internal dosimetry using whole body counters. Design of novel whole body counters	
43) OSL dosimetry for personnel and area measurements. The	
design of the algorithms for complex field dosimetry using	
BeOSL dosimeters	
44) High and medium resolution systems for the assay and sorting	
of radioactive waste. The design of automated systems for	
radioactive waste measurements	
45) High resolution gamma spectroscopy for TL and OSL dating.	
The determination of annual doses in various soil samples.	
Rafarancas	

It is established by the internship coordinator, in accordance with the field of activity and the chosen topics.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (University of https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, University of Parma http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, University of Padua, http://en.didattica.unipd.it/didattica/2015/SC1158/2014). The content of the discipline is according to the requirements for employment in research institutes in physics and materials science and in education (under the law).

9. Assessm	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Practical	- Attendance	Verification/ Colloquium	100%
	- The application of specific methods of solving		
	the given problem;		
	- Interpretation of results;		
	- The clarity, coherence and brevity of the		
	exposition		
	- The correct use of models, formulas and relations		
	of calculation;		

Minimal requirements for passing the exam

Minimal requirements for passing the exam Requirements for mark 5 (10 points scale)

- Mandatory attendance at all research activities
- Preparation of the dissertation thesis

Requirements for mark 10 (10 points scale)

Experimental skills, well-argued knowledge and corect use of specific experimental techniques

- Demonstrated ability to analyze phenomena and processes
- Personal approach and interpretation

Date, Teacher's

name and signature,

13.07.2025 Conf. dr. Oana Ristea, Lect. dr.

Mihaela Parvu

Practicals/Tutorials/Project instructor(s),

name and signature

Conf. dr. Oana Ristea, Lect. dr. Mihaela

Parvu

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.106.1 Radionuclides, environmental radioactivity, and nuclear waste management

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Radionuclides, environmental radioactivity, and nuclear waste
	management
2.2. Teacher	Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification DS

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	47
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework			23		
Tutorat			0		
Other activities				0	
3.7. Total hours of individual study			94		
3.8. Total hours per semester			150		
3.9. ECTS				6	

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics, Mathematics, Equations of mathematical physics, Quantum physics, Statistical
	physics. Numerical methods. Programming languages.
4.2. competences	Programming languages for science. Software for processing of nuclear data and graphics.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom equipped with multimedia devices
5.2. for tutorials/practicals	Set of practical work illustrating the topics covered in the course.

o. Learning of	acomes
Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating
	principles of the main classes of detectors, and their applications in technological and medical
	fields.
	R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles
	and rules of radiological protection.
	R5. The student/graduate has advanced knowledge of the behavior of radionuclides in the
	environment, as well as of the natural and anthropogenic processes that influence environmental
	radioactivity.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and
	radiological hygiene).
	R2. The student/graduate uses radiation detection and measurement systems, adapted to various
	applications (medical, industrial, and fundamental research).
	R4. The student/graduate applies and evaluates safety and radiological protection regulations, applicable in educational and research laboratories.
	R5. The student/graduate uses sampling, analysis, and data interpretation methods for radioactive
	contamination, including spectrometry and dosimetry techniques applied in environmental contexts.
	R7. The student/graduate uses computing codes or software packages for research topics and
	specific applications.
	- Process of Processes
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.
and autonomy	R2. The student/graduate efficiently organizes professional activities and working time in
	accordance with the pursued objectives.
	R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams.
	R5. The student/graduate complies with safety and radiation protection regulations, taking
	responsibility for risk assessment and the protection of the environment and public health.
	R7. The student/graduate demonstrates autonomy in using and developing computing programs,
	taking responsibility for respecting licensing norms and collaborative practices typical of open-
	source code development.
I	

7.1 Lecture [chapters]	Teaching techniques	Observations
Cosmic rays. Primary and secondary cosmic rays. Cosmogenic	Systematic exposure - lecture.	4 Hours
radionuclides. Production mechanisms and rates, example (C-14,	Examples.	
H-3, Be-7 and other radionuclides). Applications		
Cosmogenic nuclides in situ, examples. Production mechanisms	Systematic exposure - lecture.	2 Hours
and rates (with or without erosion). Applications	Examples.	
Natural decay series. Secular equilibrium, Applications.	Systematic exposure - lecture.	2 Hours
	Examples.	
Natural radioactivity. Uranium. Thorium. Ra-266, Radon, Toron	Systematic exposure - lecture.	3 Hours
and their descendants. Distribution of radon and its descendants	Examples.	
in the atmosphere. High natural background radiation areas.		
Contributions to the natural radioactive background		
Dating methods using radioactive isotopes (K-Ar, Rb-Sr, U-	Systematic exposure - lecture.	3 Hours
Pb methods, Pb-210 activity measurements in sediments).	Examples.	
Applications		
Sources of exposure to ionising radiation. Radiotoxicity.	Systematic exposure - lecture.	2 Hours
Biokinetic models for the assay of internal doses due to the	Examples.	
incorporation of radionuclides. Dose - response models used to		
evaluate the risk of exposure to ionising radiation. Applications		
The assessment of exposure to indoor radon. Potential alfa	Systematic exposure - lecture.	2 Hours
energy (PAE) and PAE concentration (PAEC). Radon / thoron	Examples.	
equilibrium indoors; the equilibrium coefficient. Building		
materials as sources of radon. Radon attachment to the		
aerosols. Indoor radon measurements. Doses due to radon and		
descendants. Standards and regulations related to radon exposure.		
Applications		

Radioactive contamination of the environment. Sources of contamination. NORM and TENORM. Radioactive effluents. Methods for establishing the derived limits for radioactive effluents. Applications	Systematic exposure - lecture. Examples.	2 Hours
Nuclear and radiological accidents and incidents. The INIS scale.	Systematic exposure - lecture.	4 Hours
Models for the atmospheric dispersion of radioactive emissions.	Examples.	
Environmental contamination subsequent to the accidents and		
methods for environmental monitoring. Rules for the response		
to nuclear / radiological accidents. Examples: the Chernobil and		
Fukushima accidents. The radiological accident from Gôiania.		
applications		
Managament of radioactive waste. Categorising and	Systematic exposure - lecture.	4 Hours
characterisation of radioactive waste. Processing and storage of	Examples.	
radioactive waste. Orphan sources. Examples.		

- 1. G.Vladuca "Elemente de fizica nucleara", partea I, Ed.Univ.Buc., 1988.
- 2. G. Vladuca "Elemente de fizica nucleara", partea a II-a, Ed. Univ. Buc., 1990.
- 3. O. Sima, Note de curs Radioactivitatea mediului.
- 4. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear », Ed.Univ. Buc.1999.
- 5. V. Valcovic, Radioactivity in the environment, Elsevier, 2000.
- 6. M. Eisenbud, T. Gessel, Environmental radioactivity, Academic Press, 1997
- 7. M. L'Anunziata, Handbook of Radioactivty Analysis, Academic Press 2012
- 8. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), editiile din 1988, 1993, 1996, 2000, 2008, 2010 etc.; http://www.unscear.org/unscear/en/publications.html
- 9. V.Cuculeanu "Fizica si calculul reactorilor nucleari cu neutroni rapizi", Ed.Teh., Buc., 1982
- 10. Reveica Ion-Mihai, Radioactivitatea si circuitul izotopilor radioactivi in mediu, Ed. Univ.Buc., 1998.
- 11. O.Duliu, Aplicatiile radioatiilor nucleare, Ed.Univ.Buc., 1993.
- 12. C. Cosma, T. Jurcut, Radonul si mediul inconjurator, Editura Dacia, 1996

7.3 Practicals	Teaching techniques	Observations
Applications concerning the radioactive series and the secular		4 Hours
equilibrium.		
Gamma spectrometry with NaI(Tl) detectors. Gamma		2 Hours
spectrometry analysis of a pitchblende sample		
Study of self-absorption effects in thick radioactive samples		2 Hours
Determination of the density variation of samples by the		2 Hours
transmission of beta radiation		
Measurement of the half-life of 40K using a KCl sample		2 Hours
Data analysis to obtain isochronous curves in dating applications		2 Hours
The calculation of derived activity concentrations for water and		2 Hours
air effluents.		
Evaluation of radioactive contamination of the environment after		4 Hours
a single emission incident using the Gaussian dispersion model.		
Methods for finding and identifying an orphan source		2 Hours
Practical exercise of intervention in the case of a nuclear accident		4 Hours
Measurement of area contamination using low level alpha beta		2 Hours
counting.		

References:

- 1. G.Vladuca "Elemente de fizica nucleara", partea I, Ed.Univ.Buc., 1988.
- 2. G.Vladuca "Elemente de fizica nucleara", partea a II-a, Ed.Univ.Buc., 1990.
- 3. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear», Ed.Univ. Buc.1999.
- 4. O. Sima, Note de curs Radioactivitatea mediului.
- 5. Reveica Ion-Mihai, Radioactivitatea si circuitul izotopilor radioactivi in mediu, Ed. Univ.Buc., 1998.
- 6. O.Duliu, Aplicatiile radioatiilor nucleare, Ed.Univ.Buc., 1993.
- IAEA (www.iaea.org), IAEA Nuclear Data Section (www-nds.iaea.org): the nuclear data libraries RIPL and EXFOR.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Given the special importance of the discipline for applications in the field of nuclear physics (multiple applications in all fields, industry, medicine, agriculture, energy, etc.) in order to prepare the contents and choose the teaching/learning methods, the teachers of the discipline consulted the content of similar couses taught at universities abroad (Université de Bordeuaux, Université Paris-Sud, Université Catholique Louvain-la-Neuve, etc.). The content of the discipline is in accordance with the employment requirements in research institutes in the field of nuclear physics and nuclear reactors, at nuclear power plants and in higher education field (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate and analyze specific examples 	Oral examination	70%
Practical	 ability to use specific methods to solve a given problem. ability to analyze the lab data interpretation of the results 	Lab reports	30%
Minimal requirements for passing the exam	Minimal requirements for passing the exam Correct understanding of the concepts and phenomaccurate numerical results on topics imposed. Requirements for mark 5 (10 points scale) • Finalization of the tasks given during the practical • Correct exposure of the subjects indicated to obtain	l activities.	and to obtain

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache Vasilache

Practicals/Tutorials/Project instructor(s), name and signature

Conf. dr. Oana Ristea, Lect. dr. Radu Vasilache

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.106.2 Applications of Nuclear Physics in life sciences and medicine

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

2.1. Course unit title	Applications of Nuclear Physics in life sciences and medicine		
2.2. Teacher	Lect. dr. Marius Calin		
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Marius Calin		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification DS		

3. Total estimated time

3. Iotal Collilated tille					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bib	liography	47
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework			23		
Tutorat					0
Other activities			0		
3.7. Total hours of individual study				94	
3.8. Total hours per semester			150		
3.9. ECTS					6

4. Prerequisites (if necessary)

4.1. curriculum	Atomic physics, Nuclear physics, Optics, Quantum physics, Statistical physics
4.2. competences	Fission and fusion processes, nuclear reactors, nuclear spectroscopy, nuclear reactions mechanims

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (with multimedia facilities)
5.2. for tutorials/practicals	Experimental setups from Nuclear Physics Laboratory, Computer Network (or individual
	laptops)

or Ecurining or	
Knowledge	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating
	principles of the main classes of detectors, and their applications in technological and medical
	fields.
	R3. The student/graduate knows and understands the operating principles and applicability of
	fundamental equipment used in each subfield of atomic and nuclear physics.
	R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles
	and rules of radiological protection.
	R5. The student/graduate has advanced knowledge of the behavior of radionuclides in the
	environment, as well as of the natural and anthropogenic processes that influence environmental
	radioactivity.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.

Skills	R2. The student/graduate uses radiation detection and measurement systems, adapted to various				
	applications (medical, industrial, and fundamental research).				
	R3. The student/graduate collects and interprets data obtained through scientific methods,				
	integrating the results within an analytical framework.				
	R4. The student/graduate applies and evaluates safety and radiological protection regulations,				
	applicable in educational and research laboratories.				
	R5. The student/graduate uses sampling, analysis, and data interpretation methods for radioactive contamination, including spectrometry and dosimetry techniques applied in environmental contexts.				
	R7. The student/graduate uses computing codes or software packages for research topics and				
	specific applications.				
Responsibility	R2. The student/graduate efficiently organizes professional activities and working time in				
Responsibility and autonomy	R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives.				
	accordance with the pursued objectives.				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest.				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams.				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams. R5. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health. R7. The student/graduate demonstrates autonomy in using and developing computing programs,				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams. R5. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-				
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams. R5. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health. R7. The student/graduate demonstrates autonomy in using and developing computing programs,				

Systematic exposition - ecture. Examples	8 Hours
Systematic exposition - ecture. Examples	8 Hours
-	
•	ystematic exposition - cture. Examples

Nuclear analytical techniques in medicine	Systematic	exposition	6 Hours
Radioimmunology. Performance and limitations. Examples	- lecture.	Heuristic	
	conversation.	Critical	
	analysis. Example	S	
Special problems of dosimetry and radioprotection in nuclear	Systematic	exposition	2 Hours
medicine	- lecture.	Heuristic	
Internal irradiation and calculation of effective equivalent doses	conversation. Exam	mples	
for gamma and beta emitters.			
In-situ measurement of absorbed doses (TLD and ionization			
micro-chambers).			
Quality assurance in nuclear medicine	Systematic	exposition	2 Hours
Criteria for quality assurance in the case of exploratory and	- lecture.	Heuristic	
curative medicine	conversation. Exam	mples	
Methods of radioimmunoanalysis and other methods of	Systematic	exposition	2 Hours
investigation of the living substance	- lecture.	Heuristic	
	conversation. Exam	mples	

Rogers, A. W (1979). Techniques of Autoradiography (3rd ed.). New York: Elsevier North Holland. ISBN 0-444-80063-8.

(1982) Quality Assurance in Nuclear Medicine, World Health Organization, ISBN: 92-4-154165-2

Hatzialekou, U., Henshaw, D.L., Fews, A.P. (1982) Automated image analysis of alpha-particle autoradiographs of human bone, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 263, 504-514

Chard, T. (1995) An Introduction to Radioimmunoassay and Related Techniques, Fifth Edition, Elsevier Science, ISBN: 978-0444821195

Petegnief Y, Aubineau-Laniece I, Kerrou K, Jourdain JR, Talbot JN. (2001) Advanced radionuclide detection techniques for in vitro and in vivo animal imaging. Cell and Molecular Biology (Noisy-le-Grand). 47, 443-51.

Khan, T. S., Sundin, A., Juhlin, C., Långström, B., Bergström, M., Eriksson, B. (2003). "11C-metomidate PET imaging of adrenocortical cancer". European Journal of Nuclear Medicine and Molecular Imaging 30 (3): 403–410. doi:10.1007/s00259-002-1025-9

Bailey, D.L, Townsend, D.W., Valk, P.E., Maisey, M.N. (2005). Positron Emission Tomography: Basic Sciences. Springer-Verlag. Heidelberg, ISBN 1-85233-798-2.

Brix, G., Lechel, U., Glatting, G., et al. (2005). "Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations". Journal of Nuclear Medicine 46, 608–613

Phelps, M.E. (2006). PET: physics, instrumentation, and scanners. Springer-Verlag, Heidelberg. ISBN 0-387-34946-4 Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M. (2012) The Essential Physics of Medical Imaging, Third Edition, Lippincotl Williams and Wilkins, Philadelphia, ISBN-13: 978-0781780575

Hörtnagl, H., Tasan, R.O., Wieselthaler, A., Kirchmair, E., Sieghart, W., Sperk, G. (2013) Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain, Neuroscience, (In Press) disponibil on-line pe ScienceDirect.

7.3 Practicals	Teaching techniques	Observations
Measurement of environmental samples. Specific applications	Guided practical activity	2 Hours
Specific calculation codes used to measure the radioactivity of samples of low activity. Applications	Guided practical activity	6 Hours
Specific calculations for measuring the activity of descendants of radon and thoron. Applications	Guided practical activity	6 Hours
Calculation codes for estimating the doses and the associated risks	Guided practical activity	6 Hours
Detectors for measuring the radioactivity of environmental samples. Radon detectors. Problems	Guided practical activity	4 Hours
Problems		4 Hours

G.Vladuca « Elemente de fizica nucleara, partea I », Ed.Univ.Buc., 1988.

G.Vladuca « Elemente de fizica nucleara, partea a II-a », Ed.Univ.Buc., 1990.

A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear », Ed.Univ. Buc.1999.

O. Sima, Note de curs Radioactivitatea mediului.

Reveica Ion-Mihai, Radioactivitatea si circuitul izotopilor radioactivi in mediu, Ed. Univ.Buc., 1998.

O.Duliu, Aplicatiile radioatiilor nucleare, Ed.Univ.Buc., 1993.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Université de Bordeuaux, Université Paris-Sud, Université Catholique Louvain-la-Neuve etc). The content of the discipline is according to the requirements of employment in research institutes in nuclear physics and engineering, medical laboratories that use nuclear methods in investigation and treatment (according to the law).

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- coherence and clarity of exposition	Written examination	50%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyse specific examples		
Practical	- ability to use specific problem solving methods	Homeworks/writen tests	50%
	- ability to analyse and discuss the results		
Minimal	Minimal requirements for passing the exam		
requirements	Correct understanding of the concepts and phenomena, the ability to work with them and obtain		
for passing	accurate numerical results on topics imposed.		
the exam			
	Requirements for mark 5 (10 points scale)		
	At least 50% of exam score and correct solving of a	problem.	
	Requirements for mark 10 (10 points scale)		
	Correct solving of all exam topics.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

Lect. dr. Marius Calin

Lect. dr. Marius Calin

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.110.1 Models for nuclear structure, nuclear and photonuclear reactions

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Models for nuclear structure, nuclear and photonuclear reactions		
2.2. Teacher Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea			
2.3. Tutorials/Practicals instructor(s) Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research					36
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester			200		
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics, Interaction of ionizing radiations with matter, Mathematics, Quantum Physics,
	Statistical Physics
4.2. competences	Nuclear Physics, Interaction of ionizing radiations with matter, Mathematics, Quantum Physics,
	Statistical Physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room equipped with internet connection and video-projector.		
5.2. for tutorials/practicals	Multimedia room equipped with internet connection and video-projector, computers,		
	specific codes.		

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating
	principles of the main classes of detectors, and their applications in technological and medical
	fields.
	R3. The student/graduate knows and understands the operating principles and applicability of
	fundamental equipment used in each subfield of atomic and nuclear physics.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
	R9. The student/graduate has in-depth knowledge of the mechanisms of nuclear fission and fusion
	processes, nuclear structure models, and their applications in energy and technology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R7. The student/graduate uses computing codes or software packages for research topics and specific applications. R9. The student/graduate is capable of analyzing and comparing different nuclear processes, using theoretical models and computational tools to evaluate nuclear reactions and energy production.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R9. The student/graduate can participate in projects concerning the sustainable development of nuclear energy sources, taking responsibility for evaluating the scientific, technological, and ethical impact of adopted decisions.

7.1 Lecture [chapters]	Teaching techniques	Observations
Review of the nuclear physics and quantum mechanics notions	Systematic exposition	2 Hours
which enter the nuclear structure and interaction modeling.	- lecture. Heuristic	
	conversation. Examples	
Nuclear forces. Nuclear potential.	Systematic exposition	2 Hours
	- lecture. Heuristic	
	conversation.	
Nuclear structure models. Hypothesis and experimental	Systematic exposition	6 Hours
arguments. Independent- particle models Collective models.	- lecture. Heuristic	
Unified model. Predicted quantities.	conversation.	
Theoretical elements of alpha, beta and gamma decay.	Systematic exposition	4 Hours
	- lecture. Heuristic	
	conversation.	
Nuclear reactions: classification, kinematics, observables.	Systematic exposition	2 Hours
Reaction cross sections.	- lecture. Heuristic	
	conversation.	
Reaction mechanisms: direct interaction, preequilibrium	Systematic exposition -	2 Hours
emission, compound nucleus formation and decay. Experimental	lecture. Examples	
arguments.		
Nuclear reaction modeling. Scattering matrix. Analysis of	Systematic exposition -	4 Hours
resolved and unresolved resonances. Statistical models: optical	lecture.	
model, Hauser-Feshbach model.		
Transmission coefficients for particles, gamma-decay and fission.	Systematic exposition -	4 Hours
Model parameters.	lecture. Examples	
Photo-nuclear reactions. Photo-absorption, strength functions,	Systematic exposition -	2 Hours
giant dipole resonances.	lecture. Examples	

- 1. G.Vlăducă, Elemente de fizică nucleară I, Ed.Univ.Buc., 1989
- 2. G.Vlăducă, Elemente de fizică nucleară II, Ed.Univ.Buc., 1990
- 3. G.Vlăducă, Reacții nucleare și fisiune nucleară, Ed.Univ.Buc., 1981
- 4. M. Sin, Lecture Notes
- 5. David J. Rowe, John L. Wood, Fundamentals of Nuclear models, World Scientific, 2010
- 6. Hans Paetz gen. Schieck, Nuclear Reactions An Introduction, Springer, 2014

7.3 Practicals	Teaching techniques	Observations
Applications of the conservation laws as selection rules in nuclear	Examples. Solving problems.	2 Hours
physics.		
Comparison between the structure model predictions and the	Examples. Solving problems.	4 Hours
experimental data.	Employing data bases.	
Comparison between the decay theory predictions and the	Examples. Solving problems.	4 Hours
experimental data.	Employing data bases.	
Calculations of kinematic quantities for nuclear reactions.	Examples. Solving problems.	2 Hours
Reaction model input parameters retrieval from RIPL.	Examples. Employing data	4 Hours
	bases.	
Nuclear reaction induced by neutrons and charged particles on	Examples. Employing data	4 Hours
medium nuclei calculations.	bases.	
Nuclear reaction induced by neutrons and photons on fissionable	Examples. Employing data	4 Hours
nuclei calculations.	bases.	
Sensitivity studies. Uncertainties and correlations estimation for	Examples. Employing data	4 Hours
the reaction quantities. Covariance matrix calculation.	bases.	

References:

- 1. G.Vlăducă, Reactii nucleare probleme, Ed.Univ.Buc., 1979
- 2. G.Vlăducă, Probleme avansate de fizică nucleară, Ed.Univ.Buc., 1997
- 3. www-nds.iaea.org: ENSDF, Live Chart of Nuclides, ENDF, EXFOR, RIPL, EMPIRE, Photonuclear

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course is important for the theoretical and experimental physics, as well as for all the fields which benefit from nuclear methods and techniques. Therefore the subjects are treated from theoretical, experimental, calculation/simulation and users' perspectives. This approach is the result of teaching and research expertise, of the analysis of similar courses and of the interaction with research institutes and international agencies which coordinates the nuclear activities world-wide. The content of the course is in line with the requirements/expectations of the potential employers of our master graduates.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 appropriate approach of the subject coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyze specific examples 	Oral examination	50%
Tutorial			50%
Minimal requirements for passing the exam	Correct treatment of specified subjects.		

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea Ristea

Date of approval

Head of department
name and signature

15.07.2025

Leat dr. Sanda VOINE

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.110.2 Experimental physics of heavy-ions at low energies

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Experimental physics of heavy-ions at low energies		
2.2. Teacher	Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea		
2.3. Tutorials/Practicals instructor(s)	Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research					36
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat					0
Other activities					0
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

ii i i ci cquisite.	(II necessary)
4.1. curriculum	Mathematical Analysis, Theoretical Mechanics, Optics, Atomic Physics, Nuclear Physics,
	Particle Physics, Electrodynamics, Statistical Physics, Experimental Methods in Nuclear Physics
4.2. competences	Programming Languages; Numerical Methods

5. Conditions/Infrastructure (if necessary)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5.1. for lecture	Multimedia room equipped with internet connection and video-projector.
5.2. for tutorials/practicals	Multimedia room equipped with internet connection and video-projector, computers,
	specific codes.

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,	
	including theoretical models, methods, and experimental techniques.	
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating	
	principles of the main classes of detectors, and their applications in technological and medical	
	fields.	
	R3. The student/graduate knows and understands the operating principles and applicability of	
	fundamental equipment used in each subfield of atomic and nuclear physics.	
	R7. The student/graduate knows the operating principles and applications of specialized software	
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.	
	R9. The student/graduate has in-depth knowledge of the mechanisms of nuclear fission and fusion	
	processes, nuclear structure models, and their applications in energy and technology.	

NZ1He	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,
Skills	
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and
	radiological hygiene).
	R2. The student/graduate uses radiation detection and measurement systems, adapted to various
	applications (medical, industrial, and fundamental research).
	R3. The student/graduate collects and interprets data obtained through scientific methods,
	integrating the results within an analytical framework.
	R7. The student/graduate uses computing codes or software packages for research topics and
	specific applications.
	R9. The student/graduate is capable of analyzing and comparing different nuclear processes, using
	theoretical models and computational tools to evaluate nuclear reactions and energy production.
	theoretical models and computational tools to evaluate nuclear reactions and energy production.
Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,
and autonomy	acting autonomously and responsibly in decision-making.
	D2 The student/graduate efficiently organizes professional activities and working time in
I	R2. The student/graduate efficiently organizes professional activities and working time in
	accordance with the pursued objectives.
	accordance with the pursued objectives.
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest.
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs,
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R9. The student/graduate can participate in projects concerning the sustainable development of
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R9. The student/graduate can participate in projects concerning the sustainable development of nuclear energy sources, taking responsibility for evaluating the scientific, technological, and ethical
	accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R9. The student/graduate can participate in projects concerning the sustainable development of

7.1 Lecture [chapters]	Teaching techni	iques	Observations
First experiments with heavy ions at low energies. Discovery of the fission isomers. Strutinski's theory. Nuclear structure models and perfecting the mass formula from the liquid drop model to explain the synthesis of elements in the Universe	Systematic - lecture. conversation.	exposition Heuristic Examples	4 Hours
Kinematics of the nuclear reactions. Specific features of the heavy ion reactions. Deflection function in the electric field of punctiform electric charge, extended electric charge, respectively. Heavy ions trajectories. Classification of the reactions induced by heavy ions using different criteria. Applications of the heavy ion reactions (PIXE, PIGE, Rutherford back-scattering etc.).	Systematic - lecture. conversation.	exposition Heuristic Examples	4 Hours
Heavy Ions Physics at the tandem accelerators. IFIN-HH case. Tandem description (heavy ion sources, tandem structure, nuclear targets). Experimental set-ups for heavy ion experiments.	Systematic - lecture. conversation.	exposition Heuristic Examples	4 Hours
Reactions induced by radioactive beams. Exotic nuclei. Petraşcu's method for obtaining exotic nuclei. IFIN-HH and RIKEN experiments for obtaining exotic nuclei in heavy ions induced reactions at low energies.	Systematic - lecture. conversation.	exposition Heuristic Examples	4 Hours
Nuclear potentials used in the study of the heavy ion reactions at low energies	Systematic - lecture. conversation.	exposition Heuristic Examples	2 Hours
Heavy ions fusion. Theoretical aspects and experimental conditions. Specific reaction mechanisms in heavy ions fusion. Energy dependence of the fusion cross sections of the heavy ions. Experimental results	Systematic - lecture. conversation.	exposition Heuristic Examples	2 Hours

Deep inelastic reactions with heavy ions. Conservative and	Systematic exposition	4 Hours
dissipative forces. Double nuclear system formation. Lagrange	- lecture. Heuristic	
formalism. Gross and Kalinovsky model.	conversation.	
Elastic scattering of the heavy ions. Classical model	Systematic exposition	2 Hours
and deflection function. Diffractive models (Fresnel and	- lecture. Heuristic	
Fraunhoffer). Optical model and complex nuclear potential.	conversation. Examples	
Search for super-heavy elements in heavy ion reactions.	Systematic exposition	2 Hours
Perspectives in Heavy Ion Physics at Low Energy.	- lecture. Heuristic	
	conversation.	

- 1. A Das and T. Ferbel Introduction to Nuclear and Particle Physics, World Scientific, Second edition, 2005
- 2. B.R.Martin Statistics for Physicists, Plenum Press, 1971
- 3. Anișoara Constantinescu Reactii nucleare cu ioni grei Editura Universității din București, 1993
- 4. K.Heyde Basic Ideas and Concepts in Nuclear Physics IOP Bristol and Philadelphia, 1999
- 5. K. Bethge (editor) Experimental Methods in Heavy Ion Physics Lectures Notes in Physics 83(1978)1-251
- 6. Valery Zagrebaev Heavy Ion Reactions at Low Energies Lectures Notes in Physics 963(2019)1-148
- 7. R. Prasad, B.P. Singh Fundamentals and Applications of Heavy Ion Collisions (Below 10 MeV/Nucleon Energies) Cambridge University Press, 2018 (318 pages)
- 8. Stefaan Tavernier Experimental Techniques in Nuclear and Particle Physics Springer Springer Heidelberg Dordrecht London New York, 2010 (312 pages)
- 9. O.Bersillon The Computer Code SCAT2, CEA-N-2227, 1981
- 10. Isao Tanihata et al Phys.Lett.160B(1985)380
- 11. M.Petrașcu et al Nucl.Phys. A790(2007)235c-240c
- 12. C. Beşliu, Al. Jipa Modele de structură nucleară și mecanisme de reacție Editura Universității din Buurești, 2002

7.3 Practicals	Teaching techniques	Observations
Production methods of nuclear targets - in collaboration with	Practical activity	4 Hours
NFD from IFIN-HH		
Realization of the experimental set-up for the study of heavy ion	Practical activity	4 Hours
reactions - in collaboration with NFD from IFIN-HH		
Study of the heavy ion trajectories in electric fields	Practical activity	4 Hours
Study of the heavy ions trajectories in electric and nuclear fields	Practical activity	4 Hours
for obtaining of the deflection functions		
Utilization of the different calculus programs in the processing of	Practical activity	4 Hours
the simulated data and experimental data from the study of heavy		
ion reactions at low energies (ROOT, different libraries etc.)		
Study of the nuclear potential for different heavy ion reactions at	Practical activity	2 Hours
low energies		
Study of the heavy ion fusion reactions. Fits of the model	Practical activity	2 Hours
predictions to the existing experimental results on heavy ion		
fusion		
Study of the elastic scattering cross-sections in different heavy	Practical activity	2 Hours
ion reactions at low energies		
Problem solving		2 Hours

- 1. A Das and T. Ferbel Introduction to Nuclear and Particle Physics, World Scientific, Second edition, 2005
- 2. B.R.Martin Statistics for Physicists, Plenum Press, 1971
- 3. Anișoara Constantinescu Reactii nucleare cu ioni grei Editura Universității din București, 1993
- 4. K.Heyde Basic Ideas and Concepts in Nuclear Physics IOP Bristol and Philadelphia, 1999
- 5. K. Bethge (editor) Experimental Methods in Heavy Ion Physics Lectures Notes in Physics 83(1978)1-251
- 6. Valery Zagrebaev Heavy Ion Reactions at Low Energies Lectures Notes in Physics 963(2019)1-148
- 7. R. Prasad, B.P. Singh Fundamentals and Applications of Heavy Ion Collisions (Below 10 MeV/Nucleon Energies)
- Cambridge University Press, 2018 (318 pages)
- 8. Stefaan Tavernier Experimental Techniques in Nuclear and Particle Physics Springer Springer Heidelberg Dordrecht London New York, 2010 (312 pages)
- 9. O.Bersillon The Computer Code SCAT2, CEA-N-2227, 1981
- 10. Isao Tanihata et al Phys.Lett.160B(1985)380
- 11. M.Petraşcu et al Nucl.Phys. A790(2007)235c-240c
- 12. C. Beşliu, Al. Jipa Modele de structură nucleară și mecanisme de reacție Editura Universității din Buurești, 2002

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course forms/develops some theoretical competences and/or abilities that are important/fundamental for the student that graduate in the domain of the Modern Physics, in agreement with the national and European/international standards. The contents and the teaching methods have been selected after a careful and detailed analysis of the specific course units from the curricula of different important Universities from Europe and United (University of Oxford, University of Parma, University of Padova, University of California (see, for example https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1,

http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, http://en.didattica.unipd.it/didattica/2015/SC The course structure and content are in agreement with the requirements and expectations of the possible employers (Higher Education, Research, Industry etc.)

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final mark	
Lecture	The correct consideration on the subject extracted at examination. Clarity and coherence of presentation Right utilization of the models, formulas and relationships in calculation of the physical quantities Personal computing programs realized for a given subject	Oral examination	60%	
Practical - Ability for analyzing of the experimental or simulated data and the capacity to evaluate the obtained results and good description of the used methods at the practical classes evaluation - Periodic testing during the semester - Homeworks during the semester		Short reports on the individual work	40%	
Minimal	Correct treatment of specified subjects.			
requirements				
for passing				
the exam				

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea Ristea

Date of approval

Head of department
name and signature

15.07.2025

Leat dr. Sanda VOINE

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.111.1 Detection methods in Physics of atom, nucleus, elementary particles, and Astrophysics

1. Study program

V 1 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Detection methods in Physics of atom, nucleus, elementary particles, and		
	Astrophysics		
2.2. Teacher	Mihaela Parvu, Oana Ristea		
2.3. Tutorials/Practicals instructor(s)	Mihaela Parvu, Oana Ristea		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS		

3. Total estimated time

3. Iotai estimatea time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes.	, manuals, lectur	e notes, bib	liography	72
Research in library, study of e	lectronic res	ources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework					36
Tutorat					0
Other activities					0
3.7. Total hours of individual study					144
3.8. Total hours per semester					200
3.9. ECTS					8

4. Prerequisites (if necessary)

ii i i i i i i i i i i i i i i i i i i		
	4.1. curriculum	
	4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating
	principles of the main classes of detectors, and their applications in technological and medical
	fields.
	R3. The student/graduate knows and understands the operating principles and applicability of
	fundamental equipment used in each subfield of atomic and nuclear physics.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,
	astrophysics, and cosmology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,					
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and					
	radiological hygiene).					
	R2. The student/graduate uses radiation detection and measurement systems, adapted to various					
	applications (medical, industrial, and fundamental research).					
	R3. The student/graduate collects and interprets data obtained through scientific methods,					
	integrating the results within an analytical framework.					
	R7. The student/graduate uses computing codes or software packages for research topics and					
	specific applications.					
	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating					
	efficiently in international teams and contributing to frontier research in the field.					
Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,					
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives.					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest.					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs,					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R8. The student/graduate participates actively and responsibly in international projects, respecting					
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.					

7. Contents 7.1 Lecture [ch

7.1 Lecture [chapters]	Teaching techniques	Observations
General properties of detectors	Systematic exposition -	4 Hours
	lecture. Examples	
The main physical phenomena used for the detection of	Systematic exposition -	10 Hours
particles and constructive classes of detectors: Ionization in	lecture. Examples	
gases: detectors without amplification, proportional counters,		
Geiger counters, detectors with streamer, in liquids and in		
solid environment; scintillation counters, photomultipliers and		
photodiodes, Cerenkov effect and detectors, transition radiation		
and detectors; other principles: fog chamber, bubble, streamer,		
spark, nuclear emulsion, halide crystals, thermoluminescence,		
plastics, fluorescence, radio detection, bolometric detectors at		
cryogenic temperatures (mKelvin)		
Detector classes:	Systematic exposition	14 Hours
a) Trace detectors: multi-wire proportional chambers, planar drift	- lecture. Heuristic	
chambers, cylindrical wire chambers (proportional, temporary	conversation. Critical	
projection chambers), gaseous detectors, semiconductor track	analysis. Examples	
detectors, scintillation fibers. b) Calorimeters: electromagnetic,		
hadronic, cryogenic, other applications;		
c) Particle identification: charged particles (through flight time,		
through energy losses through ionization, Cerenkov, transition		
radiation);calorimeter identification, neutron detection,		
d) Neutrino detectors;		
e) Detection of muons;		
f) Detection of ultra high energy grasses;		
g) Cryogenic detectors for dark matter		

- 1) G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 2) W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 3) C. Grupen, B. A. Swartz, Particle Detectors, Cambridge University Press 2008
- 4) Claus Grupen, Astroparticle Physics, Springer-Verlag Berlin Heidelberg 2005
- 4) Particle Data Group, http://pdg.lbl.gov
- 5) I. Lazanu, Mihaela Parvu, Detectori de particule Îndrumar de laborator, aplicatii numerice și probleme forma electronic

7.3 Practicals	Teaching techniques	Observations
Investigation and analysis of signals in gas detection systems,	Guided work	4 Hours
scintillators and semiconductors and in associated electronics		
modules		
Experimental determination of the detection characteristics for	Guided work	12 Hours
different types of detectors		
Testing of a spectrometric chain scintillator type detector capable	Guided work	4 Hours
of discriminating the neutron gamma signal (fast and slow)		
Spatial and temporal correlations for gamma radiation	Guided work	2 Hours
investigated with scintillating detectors		
MC simulations for particle detectors		6 Hours

References:

I. Lazanu, Mihaela Parvu, Detectori de particule - Îndrumar de laborator, aplicatii numerice și probleme - format electronic

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Oral examination	70%
Tutorial	ability to use specific problem solving methodsability to analyse the results	Homeworks/writen tests	10%
Practical	 ability to use specific experimental methods/apparatus ability to perform/design specific experiments ability to present and discuss the results 	Lab reports	20%
Minimal requirements for passing the exam	 Carrying out all the activities during the semester Obtaining note 5 by summing the points obtained at the activities during the course and examination, according to the weights specified 		

Date, Teacher's

name and signature,

13.07.2025 Mihaela Parvu, Oana Ristea

Practicals/Tutorials/Project instructor(s),

name and signature

Mihaela Parvu, Oana Ristea

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.111.2 Large experiments in Nuclear Physics, Particle Physics and Astrophysics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title		Large experiments in Nuclear Physics, Particle Physics and Astrophysics			
2.2. Teacher		Lect. Dr. Mihaela Pârvu, Conf. Dr. Oana Ristea			
2.3. Tutorials/Practicals instructor(s)		Lect. Dr. Mihaela Pârvu, Conf. Dr. Oana Ristea			
	2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS			

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	72
Research in library, study of el	ectronic res	ources, field rese	earch		36
Preparation for practicals/tutorials/projects/reports/homework					36
Tutorat					0
Other activities					0
3.7. Total hours of individual study					144
3.8. Total hours per semester					200
3.9. ECTS					8

4. Prerequisites (if necessary)

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(
4.1.	. curriculum	Equations of mathematical physics, Electricity, Atomic physics, Nuclear physics, Op					
		Quantum physics, Statistical physics					
4.2.	. competences	Physical data processing and numerical methods					

${\bf 5.\ Conditions/Infrastructure\ (if\ necessary)}$

5.1. for lecture	Classroom (preferably, but not required, multimedia facilities)			
5.2. for tutorials/practicals	Experimental set-ups from the Laboratory of Nuclear Physics, the Laboratory of Nuclear			
	Spectroscopy and Detectors			

IZ11	D1 The state of th				
Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,				
	including theoretical models, methods, and experimental techniques.				
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating				
	principles of the main classes of detectors, and their applications in technological and medical				
	fields.				
	R7. The student/graduate knows the operating principles and applications of specialized software				
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data. R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,				
	astrophysics, and cosmology.				
	astrophysics, and cosmology.				

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,						
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and						
	radiological hygiene).						
	R2. The student/graduate uses radiation detection and measurement systems, adapted to various						
	applications (medical, industrial, and fundamental research).						
	R7. The student/graduate uses computing codes or software packages for research topics and						
	specific applications.						
	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating						
	efficiently in international teams and contributing to frontier research in the field.						
Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,						
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.						
	acting autonomously and responsibly in decision-making.						
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in						
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives.						
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R7. The student/graduate demonstrates autonomy in using and developing computing programs,						
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-						
	acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.						

7.1 Lecture [chapters]	Teaching techniques	Observations
Underground astrophysics experiments	Systematic exposition -	14 Hours
	lecture. Examples	
The purpose of these experiments:		
a) Searching for dark matter and dark energy from the Universe:		
direct and indirect searches		
b) Double beta disintegrations without neutrinos,		
c) The physics of neutrinos:		
c1) Sources of neutrinos: supernovae, sun, atmospherics,		
geoneutrinos, accelerators, (beams, neutrino factories), reactors,		
relic neutrinos;		
c2) Oscillations of neutrinos.		
Experiments with different distance bases from tens of cm		
thousands of miles away;		
c3) Direct mass search		
d) Stability of matter - proton decay		
Detection principles: ionization, Cerenkov radiation,	Systematic exposition -	4 Hours
scintillations, temperature (phonons), bubbles, microbubbles,	lecture. Examples	
tracking		
Technologies: bolometric calorimetry, semiconductor and	Systematic exposition	4 Hours
scintillation crystal calorimetry, liquid / gas calorimetry,	- lecture. Heuristic	
temporary projection chamber, bubble chamber, other techniques	conversation. Critical	
	analysis. Examples	
The main experiments	Systematic exposition	6 Hours
The problem of the radioactive fund underground	- lecture. Heuristic	
	conversation. Critical	
	analysis. Examples	

Bibliography:

- 1) G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 2) W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 3) Claus Grupen, Astroparticle Physics, Springer-Verlag Berlin Heidelberg 2005
- 4) Particle Data Group, http://pdg.lbl.gov
- 5) http://www.aspera-eu.org/images/stories/Roadmap/brussels-petronzio.pdf
- 6) OECD Global Science Forum, Report of the Working Group on Astroparticle Physics, MARCH 2011 http://www.oecd.org/sti/scienceandtechnologypolicy/47598026.pdf
- 7) L. Pandola, Overview of the European Underground Facilities, arXiv:1102.020
- 8) I. Lazanu, Mihaela Parvu, Detectori de particule Îndrumar de laborator, aplicatii numerice şi probleme forma electronic

7.3 Practicals	Teaching techniques	Observations
a) Numerical applications and simulations:	Guided work	4 Hours
a1) Calculation of the rate of events in direct search of dark matter		
experiments;		
a2) Calculation of the oscillation probabilities for neutrino in		
different theoretical hypotheses		
b) Calculation of energy losses for high energy particles	Guided work	4 Hours
(electrons, positron and delta electrons) using information		
obtained in the bubble chamber and streamer - experimental		
determination of the Bethe-Bloch equation		
c) Simulations using FLUKA and or GEANT for particular	Guided work	6 Hours
processes specific to experiments in this class (will be specified		
at the beginning of the course)		
d) Atmospheric muon measurements in IFIN-HH and in the	Guided work	14 Hours
Slanic-Prahova underground laboratory.		

References:

I. Lazanu, Mihaela Parvu, Detectori de particule - Îndrumar de laborator, aplicatii numerice și probleme - forma electronic

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Heidelberg, University of Cambridge, University of Cambridge Gent, Laussane). The content of the discipline is according to the requirements of employment in research institutes in nuclear physics and engineering, medical laboratories that use nuclear methods in investigation and treatment (according to the law).

9. Assessment

9. Assessme	CIIL		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- coherence and clarity of exposition		60%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyze specific examples		
Practical	- ability to use specific experimental	Lab reports	40%
	methods/apparatus		
	- ability to perform/design specific experiments		
	- ability to present and discuss the results		

Minimal			
requ	irements		
for	passing		
the exam			

Correct understanding of the concepts and phenomena, the ability to work with them and obtain accurate numerical results on topics imposed.

Requirements for mark 5 (10 points scale)

- Carrying out all the activities during the semester
- Obtaining note 5 by summing the points obtained at the activities during the course and examination, according to the weights specified

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Mihaela Pârvu, Conf. Dr. Lect. Dr. Mihaela Pârvu, Conf. Dr. Oana

Oana Ristea Ristea

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.203.1 Nuclear fission and fusion. Nuclear reactors and nuclear energetics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title				Nuclear fission and fusion. Nuclear reactors and nuclear energetics			
2.2. Teacher			Lect. Dr. Marius CĂLIN				
2.3. Tutorials/Practicals instructor(s)			Le	ct. Dr. Marius CĂLIN			
2.4 Year of study 2 2.5. Semester		1	2.6. Type of evaluation	exam	2.7.Classification	DS	

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	42	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of electronic resources, field research					
Preparation for practicals/tutorials/projects/reports/homework					
Tutorat					
Other activities					
3.7. Total hours of individual study					
3.8. Total hours per semester					
3.9. ECTS					

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics, Nuclear reactions and structure. Equations of mathematical physics, Quantum				
	physics, Statistical physics. Programming languages.				
4.2. competences	Programming languages for science. Software for processing of nuclear data. Management of				
	nuclear data library. Numerical methods				

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (with multimedia facilities)		
5.2. for tutorials/practicals	Computers connected in networks for accessing the nuclear data libraries of IAEA and		
	of other major nuclear data centers.		

Knowledge The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating principles of the main classes of detectors, and their applications in technological and medical fields. R5. The student/graduate has advanced knowledge of the behavior of radionuclides in the environment, as well as of the natural and anthropogenic processes that influence environmental radioactivity. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data. R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology. R9. The student/graduate has in-depth knowledge of the mechanisms of nuclear fission and fusion processes, nuclear structure models, and their applications in energy and technology. Skills R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). R5. The student/graduate uses sampling, analysis, and data interpretation methods for radioactive contamination, including spectrometry and dosimetry techniques applied in environmental contexts. R7. The student/graduate uses computing codes or software packages for research topics and specific applications. R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field. R9. The student/graduate is capable of analyzing and comparing different nuclear processes, using theoretical models and computational tools to evaluate nuclear reactions and energy production. Responsibility R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, and autonomy acting autonomously and responsibly in decision-making. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of opensource code development. R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community. R9. The student/graduate can participate in projects concerning the sustainable development of nuclear energy sources, taking responsibility for evaluating the scientific, technological, and ethical impact of adopted decisions.

7.1 Lecture [chapters]	Teaching techniques	Observations
Basic features of the nuclear fission process (the post-scission part). Energetic in fission (energy release in fission, kinetic energy of fission fragments, excitation energy of fragments at full acceleration, etc.)	Systematic exposition - lecture. Examples	2 Hours
Mass and charge distributions of fission fragments, of initial and final fission products. Distributions of kinetic energy of fission fragments. Isobaric charge distributions of fission fragments.	Systematic exposition - lecture. Examples	2 Hours

Properties and behaviour of quantities, which characterize the fission fragments, the prompt neutron and prompt gamma-ray emission. Experimental set-ups and measurements of these quantities.	Systematic exposition - lecture. Examples	2 Hours
Partition of the total excitation energy between fully accelerated	Systematic exposition -	2 Hours
fission fragments based on modeling at scission.	lecture. Examples	
Modeling of prompt emission in fission	Systematic exposition -	2 Hours
	lecture. Examples	
Basic features of the pre-scission part of fission induced	Systematic exposition -	2 Hours
by neutrons. Statistical treatment of the fission channel in	lecture. Examples	
competition with other open channels. Level densities of		
the compound nucleus along the fission path. Fission cross-		
sections.Basic features of the nuclear fusion process. Principle		
of the Tokamak facility. ITER project.		
Generations and types of nuclear reactors. Elements concerning	Systematic exposition -	2 Hours
the critically, the moderator, the fuel cycle and the cooler.	lecture. Examples	

- 1. G.Vladuca « Elemente de fizica nucleara, partea a II-a », Ed.Univ.Buc., 1990.
- 2. C.Wagemans (editor) "The nuclear fission process" CRC Press, USA, 1991.
- 3. A.Berinde, G.Vladuca « Reactii nucleare neutronice in reactor » Ed.Teh.Buc., 1978.
- 4. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear », Ed.Univ. Buc.1999.
- 5. G.Vladuca « Reactii nucleare si fisiune nucleara », Ed.Univ.Buc., 1981.
- 6. D.G.Madland, J.R.Nix, Nucl.Sci.Eng. (1982) 213-271
- 7. A.Tudora and F.-J.Hambsch, Eur.Phys.J.A 53 (2017) 159
- 8. OECD-Nuclear Energy Agency: The nuclear energy today / L'énergie nucléaire aujourd'hui, 2008.
- 9. R.Schulten, W.Guth "Fizica reactorilor nucleari", Ed.The.Buc.,1975.
- 10. V.Cuculeanu "Fizica si calculul reactorilor nucleari cu neutroni rapizi", Ed.Teh., Buc., 1982
- 11. A.Berinde "Elemente de Fizica si calculul reactorilor nucleari" Ed.Teh.Buc.1977
- 12. I.Purica, "Teoria reactoarelor nucleare" Ed.Polith.Buc., 1982
- 13. B.Comby "Energia nucleara si mediul", Ed.TNR, 2001
- 14. R.Capote et al. « Prompt fission neutron spectra of actinides », Nucl.Data Sheets 131 (2016) 1-106

7.3 Practicals	Teaching techniques	Observations
Applications based on the distributions of fission fragments I.	Guided work concerning	2 Hours
Calculation of single distributions $Y(A)$, $TKE(A)$, $Y(TKE)$, $Y(Z)$	the writing of computer	
etc. from a multiple fragment distribution Y(A,Z,TKE) given as	codes providing the single	
input.	distributions of fragments	
	from an experimental multiple	
	distribution $Y(A,Z,TKE)$.	
Applications based on the distributions of fission fragments II.	Guided work concerning	2 Hours
Calculation of average values of different quantities	the writing of computer	
characterizing the fission fragments.	codes providing the average	
	values of different quantities	
	characterizing the fission	
	fragments.	
Applications based on the distributions of fission fragments II.	Exposure.	2 Hours
Build of the fission fragment range using the isobaric charge	Guided work for writing the	
distribution and the charge polarization. Highlight of the even-	related computer codes.	
odd effects.		

Prompt neutron multiplicity calculation using recent modelings I.	Exposure. Guided work for writing the first part of the related computer code, i.e. subroutines for the partition of total excitation energy between complementary fragments.	2 Hours
Prompt neutron multiplicity calculation using recent modelings II.	Exposure. Guided work for writing the second part of the related computer code, i.e. subroutines including the prompt emission.	2 Hours
Fit of experimental prompt neutron spectrum data with a Maxwellian spectrum.	Exposure. Guided work for writing the related computer code. Application for several sets of experimental data.	2 Hours
Modeling of prompt neutron spectrum using the most probable fragmentation approach, under the approximation of a constant compound nucleus cross-section of the inverse process of neutron evaporation from fragments.	Exposure. Guided work for writing the related computer code.	2 Hours
Applications based on fission fragment distributions I.	Guided practical activity	2 Hours
Applications based on fission fragment distributions II.	Guided practical activity	2 Hours
Applications based on fission fragment distributions III.	Guided practical activity	2 Hours
Prompt neutron multiplicity calculation based on new modelings I.	Guided practical activity	2 Hours
Prompt neutron multiplicity calculation based on new modelings II.	Guided practical activity	2 Hours
Fit of experimental prompt neutron spectrum data with Maxwellian and Watt spectra.	Guided practical activity	2 Hours
Modeling of prompt neutron spectrum using the most-probable fragmentation approach.	Guided practical activity	2 Hours

- 1. C. Wagemans (editor) "The nuclear fission process" CRC Press, USA, 1991.
- 2. G.Vladuca « Elemente de fizica nucleara, partea a II-a », Ed.Univ.Buc., 1990.
- 3. A.Berinde, G.Vladuca « Reactii nucleare neutronice in reactor » Ed.Teh.Buc., 1978.
- 4. A.Tudora, E.Sartori "Biblioteci de date nucleare si coduri de calcul din domeniul nuclear », Ed.Univ. Buc.1999
- 5. D.G.Madland, J.R.Nix, Nucl.Sci.Eng. (1982) 213-271.
- 6. A.Tudora and F.-J.Hambsch, Eur.Phys.J.A 53 (2017) 159.
- 7. IAEA (www.iaea.org), IAEA Nuclear Data Section (www-nds.iaea.org):nuclear data libraries EXFOR, RIPL, ENDF

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, taking into account the high importance of this discipline in e.g. the field of energy (nuclear power plants) of propulsion (nuclear reactors for propulsion), medicine etc., the holders of the discipline have consulted the content of similar disciplines taught in universities of abroad (Ecole Politechnique de Paris, Université de Bordeaux, Université Paris-Sud etc.). The content of the discipline is in agreement with the requirements of employment in research institutes in nuclear physics and engineering, nuclear power plants, medical laboratories, which use nuclear methods in investigation and treatment (according to the law).

9. Assessment

J. Tabbebbill				
Activity type	Assessment criteria	Assessment methods	Weight i	ìn
			final mark	

Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate and analyze specific examples 	Oral examination	40%			
Practical	 ability to use specific methods to solve a given problem. ability to analyze the obtained results knowledge and use of programming languages and numerical methods needed for the realization of computer codes for modeling and for the processing of experimental data. 	Homeworks / writen tests	60%			
Minimal	Correct understanding of the concepts and phenomena, the ability to work in a team and to obtain					
requirements	accurate numerical results on topics imposed.					
for passing	• Finalization of the tasks given during the practical activities.					
the exam	• Correct exposure of the subjects, which minimally required to obtain 5 at the oral examination.					

Practicals/Tutorials/Project instructor(s), Date, Teacher's

name and signature, name and signature

Lect. Dr. Marius CĂLIN 13.07.2025 Lect. Dr. Marius CĂLIN

Head of department name and signature Date of approval

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.203.2 Radioactive beams, nuclear bosonic condensation, and new types of nuclei

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

	2. Course unit							
2.1. Course unit title Radioactive beams, nuclear bosonic condensation, and new types of nuclear bosonic condensation.			w types of nuclei					
2.2. Teacher		Lect. Dr. Marius Calin						
	2.3. Tutorials/Practicals instructor(s)		Le	ct. Dr. Marius Calin				
	2.4 Year of study	2	2.5. Semester	1	2.6. Type of evaluation	exam	2.7.Classification	DS

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/2/0
1		3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of e	Research in library, study of electronic resources, field research				33
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				133	
3.8. Total hours per semester			175		
3.9. ECTS				7	

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis, Theoretical Mechanics, Optics, Atomic Physics, Nuclear Physics,
	Particle Physics, Electrodynamics, Statistical Physics, Experimental Methods in Nuclear Physics
4.2. competences	Programming Languages: FORTRAN, C++; Matlab, Programs for processing images and time
	series; Numerical Methods

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Seminar room/Amphitheater with multimedia features (laptop/PC, video projector,
	internet access)
5.2. for tutorials/practicals	Practical classes room with multimedia features (laptops/PCs, video projector, internet
	access), specific simulation codes, detectors, electronic units for signal processing,
	software for experimental data analysis (Minuit, Origin, etc.), collaboration with IFIN-
	HH and ISS experimental teams

or Learning ou	
Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R3. The student/graduate knows and understands the operating principles and applicability of
	fundamental equipment used in each subfield of atomic and nuclear physics.
	R6. The student/graduate understands the fundamental concepts of modern cosmology and
	astrophysics, including the structure and evolution of the Universe, galaxy formation, and
	primordial nucleosynthesis.
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,
	astrophysics, and cosmology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R6. The student/graduate analyzes and interprets data from observations and numerical simulations, using theoretical models to describe cosmological and astrophysical phenomena. R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R6. The student/graduate demonstrates initiative and autonomy in exploring topics in cosmology and astrophysics, contributing to research or science outreach activities, and integrating acquired knowledge in interdisciplinary contexts. R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community.

7.1 Lecture [chapters]	Teaching techniques	Observations
Open problems in Nuclear and Particle Physics. Ways and methods for investigations	Systematic exposition - lecture. Heuristic conversation. Examples.	1 Hour
Radioactive beams. Fundamental aspects. Ion sources and accelerators. Obtaining methods for radioactive beams productions. Existing facilities and experiments (Lise 3, Sissi, spiral etc.). High energy radioactive beams (ISOLDE, R3B, BECQUEREL etc.)	Systematic exposition - lecture. Heuristic conversation. Examples.	3 Hours
Exotic nuclei. Spectroscopy of exotic nuclei. Investigation of the nuclear reaction mechanisms and search for new information on the nuclear structure	Systematic exposition - lecture. Heuristic conversation. Examples.	2 Hours
Applications of the radioactive beams in solving problems in Nuclear Physics, Nuclear Astrophysics, Solid State Physics, Nuclear Medicine and Nuclear Therapy etc.	Systematic exposition - lecture. Heuristic conversation. Examples.	2 Hours
Clustering in Nuclear Physics processes and phenomena: From cumulative effect to Bose-Einstein condensation of alpha particles	Systematic exposition - lecture. Heuristic conversation. Examples.	1 Hour
Pionic and kaonic condensation and Migdal's point of view	Systematic exposition - lecture. Heuristic conversation. Examples.	1 Hour
Clusters formation in nuclear matter at different thermodynamic parameters.	Systematic exposition - lecture. Heuristic conversation. Examples.	1 Hour
Bose-Einstein condensation of alpha particles in a multi- component environment. Phenomenology and experiments. Connections with nuclear and cosmological processes	Systematic exposition - lecture. Heuristic conversation. Examples.	2 Hours
Alpha particles condensation and stellar evolution. Neutron stars. Perspectives	Systematic exposition - lecture. Heuristic conversation. Examples.	1 Hour

- 1. A Das and T. Ferbel Introduction to Nuclear and Particle Physics, World Scientific, Second edition, 2005
- 2. K.Heyde Basic Ideas and Concepts in Nuclear Physics IOP Bristol and Philadelphia, 1999
- 3. K. Bethge (editor) Experimental Methods in Heavy Ion Physics Lectures Notes in Physics 83(1978)1-251
- 4. R. Prasad, B.P. Singh Fundamentals and Applications of Heavy Ion Collisions (Below 10 MeV/Nucleon Energies) Cambridge University Press, 2018 (318 pages)
- 5. Stefaan Tavernier Experimental Techniques in Nuclear and Particle Physics Springer Springer Heidelberg Dordrecht London New York, 2010 (312 pages)
- 6. Richard F. Casten Nuclear Structure from a Simple Perspective, 2001 (ISBN-13: 9780198507246; DOI: 10.1093/acprof:oso/9780198507246.001.0001)
- 7. Y.G. Ma et al http://arxiv.org/ftp/nucl-ex/papers/0410/0410019.pdf
- 8. K. Hagino, Tanihata et al http://arxiv.org/1208.1583
- 9. Al.Jipa, C.Beşliu Elemente de Fizică nucleară relativistă. Note de curs, Editura Universității din București, 2002
- 10. D. Blaschke, N.K. Glendenning, A. Sedrakian Physics of Neutron Star Interiors, Springer Verlag, 2001
- 11. Xin-Hui Wu, Si-BoWang, Armen Sedrakian, Gerd Röpke Composition of Nuclear Matter with Light Clusters and Bose–Einstein Condensation of α Particles Journal of Low Temp Phys, 2017

DOI 10.1007/s10909-017-1795-x

- 12. Y Blumenfeld, T Nilsson, P Van Duppen Facilities and methods for radioactive ion beam production Phys. Scr. T152(2013)014023 (24pp) doi:10.1088/0031-8949/2013/T152/014023
- 13. Alex C. Mueller An overview of radioactive ion beams facilities Proceedings of EFAC, Vienna, Austria, 2000
- 14. Isao Tanihata Radioactive beam science, past, present, future Nuclear Instruments and Methods in Physics Research B266(2008)4067-4073
- 15. A. Griffin, D.W. Snoke, S. Stringari (editors) Bose-Einstein Condensation Cambridge University Press, 2002 (electronic edition)

7.3 Practicals	Teaching techniques	Observations
Production methods of radioactive beams - in collaboration with	Practical activity	6 Hours
NFD from IFIN-HH		
Presentation of the experimental set-ups for the study of	Practical activity	6 Hours
radioactive beams - in collaboration with NFD from IFIN-HH		
Analysis of the experimental data for characterization of the	Practical activity	2 Hours
radioactive beams		
Study of the different spectra obtained in experiments with	Practical activity	4 Hours
radioactive beams - in collaboration with NFD from IFIN-HH		
Pionic and kaonic condensation in high energy heavy ion	Practical activity	2 Hours
collisions		
Cluster condensation in experiments with nuclear emulsions - in	Practical activity	4 Hours
collaboration with ISS		
Simulations for alpha particle condensation in different nuclei	Practical activity	4 Hours

References:

https://cern.ch/

http://gsi.de/

http://jinr.ru/

The recommended bibliography for course

This course forms/develops some theoretical competences and/or abilities that are important/fundamental for the student that graduate in the domain of the Modern Physics, in agreement with the national and European/international standards. The contents and the teaching methods have been selected after a careful and detailed analysis of the specific course units from the curricula of different important Universities from Europe and United (University of Oxford, University of Parma, University of Padova, University of California, University of Frankfurt, university of Darmstadt (see, for example

https://www.ox.ac.uk/admissions/undergraduate/courses-listing?wssl=1, http://www.difest.unipr.it/it/didattica/laurea-triennale-fisica/calendario-didattico, http://en.didattica.unipd.it/didattica/2015/SC1158/2014))

The course structure and content are in agreement with the requirements and expectations of the possible employers (Higher Education, Research, Industry etc.)

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 The right consideration on the subject extracted at examination. Clarity and coherence of presentation Right utilization of the models, formulae and relationships in calculation of the physical quantities Personal computing programs realized for a given subject 	Oral examination	60%
Practical	- Ability for analyzing of the experimental or simulated data and the capacity to evaluate the obtained results and good description of the used methods at the practical classes evaluation - Periodic testing - Continuum testing during the semester - Homework solving during the semester	Short reports on the work	40%
Minimal requirements for passing	Obtaining the minimal average mark 5 Knowledge of the fundamental notions and subjects	s form the course syllabus	
the exam	Obtaining the mark 10 Good knowledge of notions from the course content, achievement of the requests at the practical classes and verification of the works at practical classes		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Marius Calin Lect. Dr. Marius Calin

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.204.1 Nuclear magnetic resonance. Physical principles and applications

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title Nuclear magnetic resonance. Physical principles and applications	
2.2. Teacher Conf.univ.dr. Vasile Bercu	
2.3. Tutorials/Practicals instructor(s)	Conf. univ. dr. Vasile Bercu
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification DA

3. Total estimated time

3. Iutai estimateu tiile					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bib	iography	45
Research in library, study of electronic resources, field research			25		
Preparation for practicals/tutorials/projects/reports/homework			49		
Tutorat					0
Other activities					0
3.7. Total hours of individual study			119		
3.8. Total hours per semester					175
3.9. ECTS					7

4. Prerequisites (if necessary)

-	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R7. The student/graduate uses computing codes or software packages for research topics and specific applications.

Res	ponsi	bility
and	autor	omv

- R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.
- R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.

7.1 Lecture [chapters]	Teaching techniques	Observations
Fundamentals of magnetic resonance physics: macroscopic description of magnetic resonance, quantum treatment of spin systems in magnetic field, spin-spin and spin-lattice interactions and corresponding relaxation times.	Systematic exposition - lecture, demonstration discussion, case study. Examples	
Relaxation processes in magnetic resonance: Bloch equations, relaxation mechanisms, resonance line.	Systematic exposition - lecture, demonstration discussion, case study. Examples	
Interactions of electron paramagnetic centers, the Spin Hamiltonian: Zeeman interaction, interaction with crystal electric field (fine structure of resonance spectra), interaction with magnetic moments of own nuclei and nuclei of neighboring atoms, dipole interaction.	Systematic exposition - lecture, demonstration, discussion, case study. Examples	
Applications of Electron Paramagnetic Resonance: Dosimetry retrospective geochronology and food science	Systematic exposition - lecture, demonstration discussion, case study. Examples	
Advanced electron paramagnetic resonance techniques: EPR at multiple fields and frequencies, puls EPR	Systematic exposition - lecture, demonstration discussion, case study. Examples	
Local interactions of nuclear magnetic centers: Chemical shift and indirect nuclear dipolar interaction	Systematic exposition - lecture, demonstration discussion, case study Examples	

References:

- 1.A. Carrington, A.D.McLachlan, Introduction to magnetic resonance with application to chemistry and chemicalphysics, Harper and Row, 1967
- J.R. Bolton, J.A.Weil, Electron paramagnetic resonance: elementary theory and practical aplications, John Wiley and Sons, Inc., Hoboken, New Jersey, 2007
- C.P. Slichter, Principle of magnetic resonance, Springer Verlag Berlin Heidelberg GmbH, 1978
- A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, 1970
- M. Ikeya, New applications of electron spin resonance: Dating, Dosimetry and Microscopy, World Scientific, 1993
- R.G. Saifutdinov, L.I. Larina, T.I. Vakul'skaya, M.G. Voronkov, Electron Paramagnetic Resonance in Biochemistry and Medicine, Kluwer Academic Publisher, 2002
- G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, (eds.) Quantitative EPR, Springer, 2010
- A. Lund, M. Shiotani (eds.) Applications of EPR in Radiation Research, Springer, 2014

7.3 Practicals	Teaching techniques	Observations
Paramagnetic electron resonance spectrometer setup: signal	Lecture. Debate. Examples.	6 Hours
dependence on modulation amplitude, microwave radiation	Guided practical activity.	
power		
Analysis of free radicals generated by irradiation with ionizing	Guided practical activity.	2 Hours
radiation: irradiated foods		
Analysis of free radicals in liquids	Guided practical activity.	2 Hours
Analysis of the Mn2+ ion in calcium carbonate	Guided practical activity.	2 Hours
Analysis of the Pb3+ ion in calcium carbonate	Guided practical activity.	2 Hours

Treatment of the H atom in an external magnetic field	Lecture. Debate.Guided	4 Hours
	practical activity.	
Interactive Cu2+ ion analysis in multiple fields and by the pulse	Guided practical activity.	4 Hours
technique		
Processing and simulation of electron paramagnetic resonance	Guided practical activity.	6 Hours
spectra		

- A. Carrington, A.D.McLachlan, Introduction to magnetic resonance with application to chemistry and chemical physics, Harper and Row, 1967
- J.R. Bolton, J.A. Weil, Electron paramagnetic resonance: elementary theory and practical aplications, John Wiley and

Sons, Inc., Hoboken, New Jersey, 2007

- C.P. Slichter, Principle of magnetic resonance, Springer Verlag Berlin Heidelberg GmbH, 1978
- A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, 1970
- M. Ikeya, New applications of electron spin resonance: Dating, Dosimetry and Microscopy, World Scientific, 1993
- A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, 2001
- C.D. Negut,M. Cutrubinis, ESR Standard Methods for Detection of Irradiated Food, în: A. K. Shukla (ed.) Electron Spin Resonance in Food Science, Elsevier, Academic Press (2017)
- O.G. Duliu, V. Bercu, ESR Investigation of the Free Radicals in Irradiated Foods, în: A. K. Shukla (ed.) Electron Spin Resonance in Food Science, Elsevier, Academic Press (2017)
- O.G. Duliu, V. Bercu, D. Neguţ, Mn2+ EPR spectroscopy for the provenance study of natural carbonates, în: A. K. Shukla (ed.) Electron Magnetic Resonance Applications in Physical Sciences and Biology, Elsevier, Academic Press (2019)

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

To identify the contents and the choice of teaching/learning methods, the holders of the subject consulted the contents of similar subjects taught at universities in the country and abroad such as the Swiss Federal Institute of Technology in Zurich (ETH Zurich), Universita degli studi di Padova, University of Southern California. The content of the discipline is according to the employment requirements in research institutes in physics and in education

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 Knowledge of the fundamental notions Appropriate achievement and correct understanding of the topics lectured in the course; Demonstration of theoretical concepts correctly using the calculus equations; Clarity, coherence and conciseness of the presentation; The correct use of the studied physical models, formulas and calculus equations; Ability to exemplify; 	Examination of theoretical knowledge - written exam	50%
Practical	To familiarize oneself with specific experimental techniques and infrastructure To apply specific methods for solving a given exercise To interpret results	Colloquium examination	50%
Minimal requirements for passing the exam	Successful completion of all laboratory work, obtain 5 in the written exam.	ning a grade of 5 in the colloquium	and a grade of

Date, Teacher's

name and signature,

13.07.2025 Conf.univ.dr. Vasile Bercu

Practicals/Tutorials/Project instructor(s),

name and signature

Conf. univ. dr. Vasile Bercu

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026 DO.204.2 Atomic and molecular clusters

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Atomic and molecular clusters
2.2. Teacher	Conf.univ.dr. Vasile Bercu
2.3. Tutorials/Practicals instructor(s)	Conf. univ.dr. Vasile Bercu
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification DA

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	, manuals, lectur	e notes, bibl	iography	40
Research in library, study of electronic resources, field research			39		
Preparation for practicals/tutorials/projects/reports/homework			40		
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				119	
3.8. Total hours per semester			175		
3.9. ECTS					7

4. Prerequisites (if necessary)

4.1. curriculum	Atomic and Molecular Physics, Quantum Mechanics, Optics, Spectroscopy
4.2. competences	Use of software packages for data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia facilities classroom
5.2. for tutorials/practicals	Multimedia facilities classroom, Computer network

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R7. The student/graduate uses computing codes or software packages for research topics and specific applications.

Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,
and autonomy	acting autonomously and responsibly in decision-making.
	R7. The student/graduate demonstrates autonomy in using and developing computing programs,
	taking responsibility for respecting licensing norms and collaborative practices typical of open-
	source code development.

7.1 Lecture [chapters]	Teaching techniques	Observations
Methods for deriving atomic clusters. Cluster characterization by	Systematic exposition -	8 Hours
mass spectrometry.	lecture. Examples	
Atomic cluster description based on electronic structure, binding	Systematic exposition -	8 Hours
energy, "jelium" type magic numbers, semiempirical methods	lecture. Examples	
and density functional theory		
Molecular clusters, formation in host mediums, optical	Systematic exposition -	6 Hours
transitions, assembly and formation of comples nanosystems,	lecture. Examples	
current applications în biophysics and energy conversion		
Collective excitations in metallic and semiconducting clusters,	Systematic exposition -	6 Hours
plasmons, molecular spectrometry applications in characterizing	lecture. Examples	
biological samples and cell aggregation		

References:

Atomic and Molecular Clusters, Ray.Johnston Tayler and Francis 2002

Bransden B., Joachain C.J. Physics of Atoms and Molecules, Longman, 1986

Bernstein, E. R. Atomic and molecular clusters, Elsevier, 1990

Haberland H., Clusters of Atoms and Molecules I: Theory, Experiment, and Clusters of Atoms, Springer 1994

7.3 Practicals	Teaching techniques	Observations
Equilibrium configurations for Na, C and Si clusters. Binding	Practical activity	4 Hours
energy calculation		
Dynamic analysis models based on semiempirical potentials	Practical activity	4 Hours
Optical transitions in large ensembles of metal atoms.	Practical activity	4 Hours
Plasmons in Au and Ag nanopowders organized in organic grid		
Plasmon spectrometry on nanopowders biological samples	Practical activity	4 Hours
employing the "on-chip spectrometry" technique		
Absorbtion band analysis of water molecular clusters in	Practical activity	2 Hours
mesoporous media and in SiOx gels as a function of temperature.		
Study of molecular cluster formation of surfactants with	Practical activity	2 Hours
spectrophotometric probe.		
Water molecular clusters în hydrocarbons în 20-90C domain.	Practical activity	2 Hours
Atomic model clusters for vibrational analysis of biocompatible	Practical activity	2 Hours
phosphosilicate glasses. P=O and P-O population analysis.		
Clusterization processes by "on-chip spectrometry" technique for	Practical activity	2 Hours
surfatants and bio-cells.		
Light scattering on bio-cells. Optical and geometrical parameter	Practical activity	2 Hours
extraction.		

References:

Atomic and Molecular Clusters, Ray. Johnston Tayler and Francis 2002

Bransden B., Joachain C.J. Physics of Atoms and Molecules, Longman, 1986

Bernstein, E. R. Atomic and molecular clusters, Elsevier, 1990

Haberland H., Clusters of Atoms and Molecules I: Theory, Experiment, and Clusters of Atoms, Springer 1994

Tsukuda T., Hakkinen H., Protected Metal Clusters: From Fundamentals to Applications, Elsevier, 2015

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- coherence and clarity of exposition	Oral examination	50%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyse specific examples		
Practical	- ability to use specific experimental	Colloquium	50%
	methods/apparatus		
	- ability to perform/design specific experiments		
	- ability to present and discuss the results		
Minimal	Correct understanding of the concepts and phenomena, the ability to work with them and obtain		
requirements	accurate numerical results on topics imposed.		
for passing	Requirements for mark 5		
the exam	Carrying out all the activities during the semester.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. univ.dr. Vasile Bercu Conf. univ.dr. Vasile Bercu

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.208.1 Spectroscopic methods and techniques for investigation of the nuclear and subnuclear systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Spectroscopic methods and techniques for investigation of the nuclear and	
	subnuclear systems	
2.2. Teacher Lect. Dr. Radu Alin Vasilache		
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Radu Alin Vasilache	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS	

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, b	ibliography	48
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				95	
3.8. Total hours per semester				125	
3.9. ECTS					5

4. Prerequisites (if necessary)

with references (in necessary)				
4.1. curriculum	Study of the courses Physics of the Atomic Nucleus, Interactions of the ionizing particles with			
	matter Interacțiile radiațiilor ionizante cu materia, Methods of Detection, Special Relativity			
	Theory, Quantum Physics			
4.2. competences	Knowledge on the use of nuclear apparatus, data analysis and processing, identifying sources of			
	information			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Digital videoprojector / HD display		
5.2. for tutorials/practicals	Laboratory apparatus: HV sources, signal generators, oscilloscopes, electrometers,		
	multichannel analyzers, NIM amplifiers, NIM timer / scaler, NIM SCA, NIM Bin,		
	computer.		

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R3. The student/graduate knows and understands the operating principles and applicability of fundamental equipment used in each subfield of atomic and nuclear physics.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework.

Responsibility	R1. The student/graduate plans and
and autonomy	acting autonomously and responsibly

- d manages complex projects in atomic and nuclear physics, ly in decision-making.
- R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest.

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction – general properties of radiation detectors. Spectroscopic detectors and their general properties	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours
Scintillation detectors. Inorganic and organic scintillators. Scintillation processes. Scintillation signal processing. Characteristics of scintillation detectors. Resolution, pulse shape, and timing properties. Spectrometry with scintillation detectors.	Systematic presentation - lecture. Heuristic conversation. Examples	4 Hours
Semiconductor detectors. Types of semiconductor detectors and applications in spectrometry. SSB, PIPS, and SiLi detectors. Construction/production of semiconductor detectors. Characteristics of semiconductor detectors.	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours
HPGe semiconductor detectors. HPGe detector configurations. Operational characteristics of HPGe detectors. Resolution, pulse shape, and timing properties. Applications in gamma spectrometry.	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours
Gamma and X-ray spectrometry. Applications. Calibration of gamma spectrometers. Calibration of spectrometers in energy. Response function. Calibrations in efficiency. Calibration methods. Factors influencing the efficiency of a measurement chain. Design of a gamma spectrometer. Selection of the measurement chain according to the application. Absolute and relative measurements. Reference materials. Intercomparisons. Applications in dating. Applications in the characterization of radioactive waste. Measurement of half-lives: the decay curve method. The delayed coincidence method. The Doppler shift method. Other methods. Ultra-low background measurements. Internal dosimetry using gamma spectrometry	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours
Alpha and heavy charged particle spectrometry. Applications. Alpha, proton, and deuteron particle spectrometry. Energy straggling and range straggling. Energy resolution and response function of alpha detectors. Energy calibration. Preparation of samples for measurement. Efficiency calibration. Heavy ion spectrometry (Z larger than 2). Pulse amplitude defect. Energy calibration. Schmitt method. Preparation of calibration sources. Time-of-flight spectrometry. EdE/dx telescopes. Space resolution detectors	ESystematic presentation - lecture. Heuristic conversation. Examples	2 Hours
Beta and electron beam spectrometry. Applications. Electron beam spectrometry using solid detectors. Electron backscattering. Resolution of electron detectors and response function. Calibration of beta spectrometers. Beta spectrometry using liquid scintillators. LSC principles. Beta spectrum. Composite beta spectra. Interference. Factors affecting the LSC beta spectrum. Quenching and counting efficiency.	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours

	Neutron detection and spectrometry. Neutron interaction with matter. Types of neutron interactions: scattering and absorption. Effective cross sections of neutron-induced reactions. Neutron flux. Interaction rates with polyenergetic neutrons. Neutron spectrometry. Slow neutron detection. Reactions used in neutron detection. Boron detectors. He detectors. Li-6 detectors. Fission chambers; activation detection; other reactions used. Fast neutron detection. Neutron spectrometry. Detection based on moderation. Bonner spheres. Detection and spectrometry based on activation reaction thresholds. Detection and spectrometry based on the recoil proton spectrum. Neutron spectrometers using crystal spectrometers. Time-of-flight (ToF)	Systematic presentation - lecture. Heuristic conversation. Examples	2 Hours
	spectrometers.		
ĺ	Applications of nuclear spectroscopy: from natural radioactivity	Systematic presentation -	2 Hours
	and the study of exotic isotopes to medicine, geology, materials	lecture. Heuristic	
	science, and forensics.	conversation. Examples	

- 1. G.Vlăducă, Elemente de fizică nucleară I, II, Ed.Univ.Buc., 1989, 1990
- 2. G. Vlăducă, R. Ion-Mihai, Spectroscopie nucleara, Ed. Universitatii din Bucuresti
- 3. G.F. Knoll, Radiation Detection and Measurement, John Wiley and Sons Inc., New York, 1989
- 4. N. Tsoulfanidis, S, Landsberger, Measurement and Detection of Radiation, 4th Edition, CRC Press, 2015
- 5. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, Berlin-Heidelberg, 1994
- 6. J. Kantele, Handbook of Nuclear Spectrometry, Academic Press, 1995
- 7. Note de curs
- 8. capitole recomandate din cursuri și cărți accesibile on-line

7.3 Practicals	Teaching techniques	Observations
NaI(Tl), CZT, HPGe detectors – properties, parameters.	Practical exercise. Examples	2 Hours
Energy and FWHM Calibrations of gamma spectrometers	Practical exercise. Examples	1 Hour
Efficiency calibrations of gamma spectrometers for various measuring scenarios using LABSocs / ISOCS	Practical exercise. Examples	2 Hours
Efficiency calibrations of gamma spectrometers using standard sources	Practical exercise. Examples	1 Hour
Analysis of gamma spectra obtained for various geological samples	Practical exercise. Examples	2 Hours
Nuclear forensics measurements - methods to evaluate U enrichment	Practical exercise. Examples	2 Hours

References:

- 1. G.F. Knoll, Radiation Detection and Measurement, John Wiley and Sons Inc., New York, 1989
- 2. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, Berlin-Heidelberg, 1994
- 3. J.W. D. Hamilton, ed., The electromagnetic interaction in nuclear spectroscopy
- 4. Romanian Reports in Physics 68 (2016) Supplement ELI-NP Technical Design Reports
- 5. IAEA TRS 398

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in medicine and medical research, the professors of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Oxford University, International Atomic Energy Agency, European Federation of Organisations for Medical Physics, European Association for Nuclear Medicine, etc.). The content of the discipline is in accordance with the requirements for employment in research institutes in nuclear physics, nuclear energy (NPPs) sector, nuclear forensics / safeguards and industry.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	

Lecture	- Clarity and coherence of exposition	Oral exam and assessment	70%
	- Correct use of the methods / physical models		
	- The ability to give specific examples		
Practical	- Knowledge and use of experimental techniques	Laboratory colloquium	30%
	- Interpretation of the results		
	- Problem solving		
Minimal	Completion of all laboratory work and grade 5 in th	e laboratory and tutorials colloquiu	ım
requirements	The correct exposure of the indicated subjects at lea	ast at qualitative level to obtain a so	core of 5 in the
for passing	final exam.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Radu Alin Vasilache Lect. Dr. Radu Alin Vasilache

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.208.2 Properties of atomic and molecular systems. Experimental models and techniques

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Properties of atomic and molecular systems. Experimental models and
	techniques
2.2. Teacher	Conf.univ.dr. Vasile Bercu
2.3. Tutorials/Practicals instructor(s)	Conf. univ.dr. Vasile Bercu
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bib	oliography	35
Research in library, study of electronic resources, field research			25		
Preparation for practicals/tutorials/projects/reports/homework			35		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			95		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

	<u> </u>
4.1. curriculum	Atomic and Molecular Physics, Quantum Mechanics, Spectroscopy
4.2. competences	Programming

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia facilities classroom
5.2. for tutorials/practicals	Laboratory

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R7. The student/graduate uses computing codes or software packages for research topics and specific applications.

Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,
and autonomy	acting autonomously and responsibly in decision-making.
	R7. The student/graduate demonstrates autonomy in using and developing computing programs,
	taking responsibility for respecting licensing norms and collaborative practices typical of open-
	source code development.

7.1 Lecture [chapters]	Teaching techniques	Observations
Modelling atomic and molecular systems: Molecular dynamics,	Systematic exposition -	6 Hours
Hartree-Fock and DFT methods.	lecture. Examples	
Photon-molecule interaction and UV-Vis, IR, microwaves	Systematic exposition -	6 Hours
molecular spectra analysis.	lecture. Examples	
Current applications of atomic systems models for nanometric	Systematic exposition -	4 Hours
structures and analysis methods.	lecture. Examples	
Thermoluminescent processes, retrospective dosimetry and	Systematic exposition -	4 Hours
geocronology. Interactions of ions with solid state matter.	lecture. Examples	
Rutherford backscattering.		

References:

B. H. Bransden, Charles J. Joachain, Physics of Atoms and Molecules, Addison-Wesley, 2003 Erza G.S., Symmetry principles of molecules, Springer-Verlag, 1982

Cowen R.D. The theory of the atomic structure and spectra, University of California Press, 1981

7.3 Practicals	Teaching techniques	Observations
Hartree-Fock method: Multi-electronic integral calculations,	Practical activities	2 Hours
convergence criteria, wavefunction analysis, total charge density		
distribution calculation in closed shell systems.		
Atomic cluster models for FTIR spectra analysis of C and Si local	Practical activities	2 Hours
vibrations. Correlation with direct measurements.		
Optical transitions în benzene molecule; HF calculations and	Practical activities	2 Hours
molecular spectrum		
Atomic cluster models for simulating the interaction of atomic	Practical activities	2 Hours
and molecular hydrogen with graphitic surfaces.		
Thermoluminescent emission of defects induced by ionizing	Practical activities	2 Hours
radiation in TiO2.		

References:

B. H. Bransden, Charles J. Joachain, Physics of Atoms and Molecules, Addison-Wesley, 2003

Erza G.S., Symmetry principles of molecules, Springer-Verlag, 1982

Cowen R.D. The theory of the atomic structure and spectra, University of California Press, 1981

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad.

9. Assessment

9. Assessino			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	coherence and clarity of exposition	Writen examination	50%
	- correct use of equations/mathematical		
	methods/physical models and theories		
	- ability to indicate/analyse specific examples		
Practical	- ability to use specific experimental	Coloquium	50%
	methods/apparatus		
	- ability to perform/design specific experiments		
	- ability to present and discuss the results		

Minimal requirements for passing the exam

Requirements for mark 5

Carrying out all the activities during the semester with obtaining mark 5 by summing the points obtained at the activities during the course and examination, according to the weights specified

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. univ.dr. Vasile Bercu Conf. univ.dr. Vasile Bercu

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.209.1 Lasers, plasma, and acceleration methods. Experimental applications at ELI-NP

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Lasers, plasma, and acceleration methods. Experimental applications at
	ELI-NP
2.2. Teacher	CS3 Dr. Mihai Straticiuc, CS2 Dr. Ovidiu Teşileanu
2.3. Tutorials/Practicals instructor(s)	CS3 Dr. Mihai Straticiuc, CS2 Dr. Ovidiu Teşileanu
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DS

3. Total estimated time

3. Iotal Cstillated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes.	, manuals, lectur	e notes, bil	oliography	48
Research in library, study of electronic resources, field research					24
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				95	
3.8. Total hours per semester				125	
3.9. ECTS					5

4. Prerequisites (if necessary)

4.1. curriculum	Previously attended courses of Electricity and Magnetism, Optics, Mathematics, Atomic Physics,
	Nuclear Physics, Programming Languages
4.2. competences	Problem solving, use of the computer

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Classroom (with multimedia facilities)
5.2. for tutorials/practicals	Experimental setups from the Laboratories of IFIN-HH, Tandem accelerators of IFIN-
	HH, desktop or laptop computers

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating
	principles of the main classes of detectors, and their applications in technological and medical fields.
	R3. The student/graduate knows and understands the operating principles and applicability of fundamental equipment used in each subfield of atomic and nuclear physics.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R7. The student/graduate uses computing codes or software packages for research topics and
	specific applications.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.

7.1 Lecture [chapters]	Teaching techniques	Observations
Short history and present status of particle accelerators	Systematic exposition -	4 Hours
development: classification. Applications: industry, medicine.	lecture. Examples	
Particle sources (electrons, ions)	Systematic exposition -	2 Hours
	lecture. Examples	
Transverse beam dynamics (emittance)	Systematic exposition -	2 Hours
	lecture. Examples	
Longitudinal beam dynamics	Systematic exposition -	2 Hours
	lecture. Examples	
Presentation of the ELI-NP project. Description of the generated	Systematic exposition -	2 Hours
beams and complex equipment	lecture. Examples	
Laser pulses as particle accelerators	Systematic exposition -	2 Hours
	lecture. Examples	
Experiments of physics and astrophysics with particles	Systematic exposition -	2 Hours
accelerated with laser pulses. Applications.	lecture. Examples	
Experiments with gamma photons generated by Laser Compton	Systematic exposition -	2 Hours
Scattering (LCS). Applications.	lecture. Examples	
Detectors developed at ELI-NP. Obtaining ultra-high levels of	Systematic exposition -	2 Hours
vacuum.	lecture. Examples	

References:

- E. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann, Particle Accelerator Physics, 3rd Edition, Springer Berlin Heidelberg New York, 2007
- S. Baird, Accelerators for Pedestrians, AB-Note-2007-014 OP, 2007

CERN Accelerator School Proceedings http://cas.web.cern.ch/cas/CAS_Proceedings.html

B. Wolf, Handbook of Ion Sources 1st Edition, CRC Press, 1995

Dabu, Razvan, Lumina extrema. Lasere de mare putere, Ed. Academiei Romane, 2015

McMahon, Quantum Field Theory Demystified McGraw-Hill Companies 2008

Vacuum Technology - http://www-eng.lbl.gov/ shuman/NEXT/REFs/Vacuum-Technology.pdf

7.3 Practicals	Teaching techniques	Observations
Using ion beams for elemental analysis and simulating a radiobiology experiment using the numerical code Fluka	Problem solving	2 Hours
Generation of ultra-short laser pulses – HPLS system at ELI-NP	Problem solving	1 Hour
Physical theories for ultra-high intensity fields	Problem solving	2 Hours

Determining the elemental composition of an artefact using the	Guided practical work	2 Hours
PIXE method (Particle Induced X-ray Emission)		
Measurement of thin films thickness using the RBS method	Guided practical work	1 Hour
(Rutherford Backscattering Spectrometry)		
Numerical simulation techniques for electron acceleration with	Guided practical work	2 Hours
laser pulses		

M. Nastasi, J. Mayer, Y. Wang, Ion Beam Analysis, Fundamentals and Applications, 2015

J. R. Bird, J. S. Williams, Ion Beams for Materials Analysis, 1989

S. Johansson, J. Campbell, K. Malmqvist, Particle-Induced X-ray Emission Spectrometry (PIXE), 1995

Dabu, Razvan, Lumina extrema. Lasere de mare putere, Ed. Academiei Romane, 2015

R.W. Hockney, J.W.Eastwood, Computer simulation using particles, IOP Publishing 1988

C.K. Birdsall, A. Langdon, Plasma physics via computer simulation, Cambridge University Press, 1991

Greiner, Reinhardt, Quantum Electrodynamics, Springer 2009

Peskin, Schroder, An introduction to QFT, Perseus Books 1995

Schwartz, Quantum Field Theory and the Standard Model, Cambridge University Press, 2014

Lahiri, Pal, A First Book of QFT, Narosa, 2004

McMahon, Quantum Field Theory Demystified McGraw-Hill Companies 2008

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching / learning methods, given the special importance of the discipline for applications in modern physics and technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is according to the requirements of employment in research institutes in nuclear physics and engineering, medical laboratories that use nuclear methods in investigation and treatment (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în		
			final mark		
Lecture	- coherence and clarity of exposition	Oral examination	70%		
	- correct use of equations/ mathematical methods/				
	physical models and theories				
	- ability to indicate/analyze specific examples				
	- application of acquired knowledge				
Practical	- ability to use specific problem solving methods	Homeworks / written tests	30%		
	- ability to use specific experimental	Lab reports			
	methods/apparatus				
	- ability to present and discuss the results				
Minimal	Minimal requirements for passing the exam				
requirements	Correct understanding of the concepts and phenomena, the ability to work with them and obtain				
for passing	accurate numerical results on topics imposed.				
the exam					
	Requirements for mark 5 (10 points scale)				
	Carrying out all the activities during the semester				
	• Obtaining note 5 by summing the points obtained at the activities during the course and examination,				
	according to the weights specified				

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 CS3 Dr. Mihai Straticiuc, CS2 Dr. CS3 Dr. Mihai Straticiuc, CS2 Dr. Ovidiu Teşileanu Teşileanu

Date of approval

Head of department
name and signature

15.07.2025

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DO.209.2 Plasma physics in the study of nuclear, astrophysical, and cosmological processes

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2. Course unit			
2.1. Course unit title	Plasma physics in the study of nuclear, astrophysical, and cosmological		
	processes		
2.2. Teacher	Lect. Dr. Marius Calin		
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Marius Calin		
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DS		

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study	-	ı.		
Learning by using one's own c	ourse notes	s, manuals, lectur	re notes, bi	bliography	48
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				95	
3.8. Total hours per semester				125	
3.9. ECTS				5	

4. Prerequisites (if necessary)

_	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	All previous compulsory subjects with a focus on Nuclear Physics, Particle Physics, Astrophysics,
	the Basics of higher Mathematics, Programming and use of simulation codes, elements of
	Mechanics and Quantum Physics, Thermodynamics and Statistical Physics, Electrodynamics and
	Theory of Relativity, Experimental Methods.
4.2. competences	Heavy ion physics, nuclear spectroscopy and nuclear reaction mechanisms

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with multimedia equipment (video projector)
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R6. The student/graduate understands the fundamental concepts of modern cosmology and
	astrophysics, including the structure and evolution of the Universe, galaxy formation, and
	primordial nucleosynthesis.
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,
	astrophysics, and cosmology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and
	radiological hygiene).
	R6. The student/graduate analyzes and interprets data from observations and numerical
	simulations, using theoretical models to describe cosmological and astrophysical phenomena.
	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating
	efficiently in international teams and contributing to frontier research in the field.
Responsibility	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics,
and autonomy	acting autonomously and responsibly in decision-making.
	R6. The student/graduate demonstrates initiative and autonomy in exploring topics in cosmology
	and astrophysics, contributing to research or science outreach activities, and integrating acquired
	knowledge in interdisciplinary contexts.
	R8. The student/graduate participates actively and responsibly in international projects, respecting
	the scientific, ethical, and collaborative standards of the fundamental physics research community.
1	acting autonomously and responsibly in decision-making. R6. The student/graduate demonstrates initiative and autonomy in exploring topics in cosmology and astrophysics, contributing to research or science outreach activities, and integrating acquired knowledge in interdisciplinary contexts. R8. The student/graduate participates actively and responsibly in international projects, respecting

7.1 Lecture [chapters]	Teaching techniques	Observations
Basic notions of plasma physics. Definition, plasma components	Systematic exposition -	2 Hours
and methods of obtaining classical plasmas	lecture. Examples	
Types of plasmas. The fundamental parameters for the	Systematic exposition -	3 Hours
characterization of plasmas. Instabilities in the classical plasmas	lecture. Examples	
Plasmas in Nuclear Physics. Nuclear fusion. Tokamak systems,	Systematic exposition -	3 Hours
the Lawson criterion and energy production.	lecture. Examples	
Plasmas in stars. Stellar evolution and connections with plasma	Systematic exposition -	4 Hours
types. Gravitational plasmas	lecture. Examples	
Relativistic and ultra relativistic heavy ion physics. Phase	Systematic exposition -	2 Hours
diagram of nuclear matter and connections with fundamental	lecture. Examples	
cosmological processes. The primordial explosion (Big Bang).		
Scenarios of the evolution of the Universe. Stages in the evolution	Systematic exposition -	2 Hours
of the Universe that can be traced through relativistic nuclear	lecture. Examples	
collisions.		
Connections between the properties of quark and glu-on	Systematic exposition -	2 Hours
plasmas/other types of nuclear matter plasmas with the properties	lecture. Examples	
of classical plasmas. Hypotheses for the introduction of similar		
parameters in nuclear matter plasmas. Comparisons		
Plasma of quarks and gluons and the initiation of the	Systematic exposition -	2 Hours
hadronization process. Nucleosynthesis and stellar evolution.	lecture. Examples	
Hubble's Law in Cosmology and Relativistic Nuclear Physics.		
Perspectives.		

- 1. L.Tonks, I.Langmuir Phys.Rev. 34(1929)876; L. Tonks Am. J. Phys. 35(1967)857
- 2. R.J. Goldston, P.H. Rutherford Introduction to Plasma Physics, CRC Press, 1995
- 3. Richard Fitzpatrick An Introduction to Plasma Physics, CRC Press, 2014
- 4. Toader E., Popescu I.I, Cinetica si dinamica plasmei Editura Stiinţifică, Bucureşti 1983
- 5. Toader E et al, Fizica plasmei și aplicații Editura Științifică, București 1981
- 6. C. Beşliu, Al. Jipa, Modele de structură nucleară și mecanisme de reacție Editura Universității din București, 2002
- 7. Al. Jipa, C.Beşliu, Elemente de Fizică nucleară relativistă. Note de curs Editura Universitatii din Bucuresti, 2002
- 8. Anthony L. Peratt Physics of the Plasma Universe Springer Verlag New York Inc., 2014
- 9. Plasma and Space Physics https://physics.dartmouth.edu/research/plasma-and-space-physics
- 10. Luis Conde An Introduction to Plasma Physics and its Space Applications IOP Bristol, London, 2020
- 11. James J.Y. Hsu Visual and Computational Plasma Physics (https://doi.org/10.1142/9288) World Scientific, Singapore, 2014 (pages: 428)
- 12. R A Treumann, W Baumjohann Advanced Space Plasma Physics (https://doi.org/10.1142/p020), 1997 (pages: 392)

7.3 Practicals	Teaching techniques	Observations
Methods of characterization of plasma as the fourth state of	Guided practical work	1 Hour
matter.	Examples	
Methods of plasma diagnosis	Guided practical work	1 Hour
Simulations with different codes to investigate the dynamics of	Guided practical work	2 Hours
relativistic nuclear collisions		
Analysis of common parameters for "nuclear" plasmas and	Guided practical work	2 Hours
classical plasmas using simulation data and experimental results		
from Relativistic Nuclear Physics		
Identification of possible instabilities in the plasma of quarks and	Guided practical work	2 Hours
gluons using parameters from Plasma Physics		
Study of the dependence of specific parameters on the conditions	Guided practical work	2 Hours
of plasma formation		

References:

- 1. Lucrări practice de cinetica și dinamica plasmei Toader E. Editura Universității din București, 1982
- 2. Bazele spectroscopiei plasmei Iova I., Popescu I.I., Toader E. Editura Științifică, București, 1987
- 3. Metode experimentale in fizica plasmei , Bratescu, G.G., and Toader E. Editura Universității din București
- 4. Elemente de Fizică nucleară relativistă. Note de curs Al. Jipa, C.Beşliu Editura Universitatii din Bucuresti, 2002
- 5. Elemente de Fizică nucleară relativistă. Note de seminar și îndrumător de laborator C.Beşliu, Al. Jipa, Editura Universității din București, 1999
- 6. Metode de identificare a particulelor elementare in Fizica energiilor inalte, Oana Ristea, Editura Universitatii din Bucuresti, 2020, ISBN: 978-606-16-1177-5

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

7. Assessin	CIII		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of presentation	Oral examination	60%
	- The correct use of calculation relations;		
	- The ability to exemplify;		
Practical	- The application of specific methods of solving	Homework (problems)	40%
	the given problem;		
	- the ability to present, analyze and interpret the		
	results;		

Minimal requirements for passing the exam

Obtaining the minimal average mark 5

The correct exposure of the subjects indicated for obtaining a score of 5 in the evaluation along the way and in the final exam.

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
13.07.2025 Lect. Dr. Marius Calin Lect. Dr. Marius Calin

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.107 Volunteering

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	Lector. Dr. Marius Călin
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification DC

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research			6		
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			25		
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat
	within 30 calendar days from the beginning of the semester. The host organization
	must be listed in the National NGO Register ([www.just.ro/registrul-national-
	ong](http://www.just.ro/registrul-national-ong)) or included in the list of validated host
	organizations at the Faculty of Physics.
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.
Responsibility and autonomy	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Project	- Running the volunteer internship.	The volunteer's activity report,	100%
	- Volunteer activity recognition file	in written format - Annex 2	
		of the Regulation on volunteer	
		credits from the University of	
		Bucharest. 50%	
		Certificate issued by the	
		host organization showing	
		hours completed, as well	
		as a brief evaluation of the	
		volunteer's activity - Annex 3	
		of the Regulation on volunteer	
		credits from the University of	
		Bucharest. 50%	
Minimal	The existence of the volunteer's activity report as well as a Certificate issued by the host organization		
requirements	indicating the number of volunteer hours completed	d and a brief evaluation of the volun	teer's activity.
for passing	The Volunteering Committee at the Faculty of Phy	ysics reviews the aforementioned of	locuments and
the exam	assigns the rating Accepted/Rejected.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
13.07.2025 Lector. Dr. Marius Călin

Date of approval Head of department

name and signature
15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.112 Simulation codes in Nuclear Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Simulation codes in Nuclear Physics
2.2. Teacher	Conf. dr. Oana Ristea
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Oana Ristea
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DA

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own of	ourse notes	, manuals, lectur	e notes, bibl	iography	22
Research in library, study of electronic resources, field research					11
Preparation for practicals/tutorials/projects/reports/homework				11	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				44	
3.8. Total hours per semester				100	
3.9. ECTS				4	

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics, Relativistic nuclear physics, programming courses
4.2. competences	Use and development of computer codes for calculus and data analysis Ability to identify and
	exploit available information resources.

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room equipped with internet connection and video-projector.		
5.2. for tutorials/practicals	Multimedia room equipped with internet connection and video-projector, computers,		
	specific codes.		

Knowledge	R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data. R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology.
Skills	R7. The student/graduate uses computing codes or software packages for research topics and specific applications. R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.

Responsibility	R7. The student/graduate demonstrates autonomy in using and developing computing programs,
and autonomy	taking responsibility for respecting licensing norms and collaborative practices typical of open-
	source code development.
	R8. The student/graduate participates actively and responsibly in international projects, respecting
	the scientific, ethical, and collaborative standards of the fundamental physics research community.

7.1 Lecture [chapters]	Teaching techniques	Observations
Basic notions about the Linux operating system.	Systematic exposition -	2 Hours
	lecture. Examples	
Data processing in heavy ion physics experiments at relativistic	Systematic exposition -	2 Hours
energies.	lecture. Examples	
Simulation codes used in relativistic nuclear physics field:	Systematic exposition -	4 Hours
HIJING and AMPT codes.	lecture. Examples	
Simulation of temporal evolution with UrQMD simulation code		
ROOT program - histograms, graphics, Trees. Analysis of	Systematic exposition -	8 Hours
simulated data	lecture. Examples	
Experimental data analysis in high energy physics. Particle	Systematic exposition -	6 Hours
identification	lecture. Examples	
Comparison of simulated and experimental data. Examples	Systematic exposition -	6 Hours
	lecture. Examples	

References:

ROOT User Guide - http://root.cern.ch/drupal/content/users-guide

Manual Linux - http://www.debian.org/doc

Modelul UrQMD - http://urqmd.org

Modelul AMPT - https://karman.physics.purdue.edu/OSCAR/index.php/AMPT

Experimentul BRAHMS de la RHIC - http://www4.rcf.bnl.gov/brahms/WWW/brahms.html

Experimentul CBM de la FAIR - http://www.fair-center.eu/for-users/experiments/cbm.html

Ramona Vogt – Ultrarelativistic Heavy Ion Collisions, Elsevier Publishing, 2007

Al.Jipa, C.Beşliu – Elemente de Fizică nucleară relativistă. Note de curs, Editura Universității din Bucureşti, 2002 C.Beşliu, Al.Jipa – Elemente de Fizică nucleară relativistă. Note de seminar și îndrumător de laborator, Editura Universității din Bucureşti, 1999

7.2 Tutorials	Teaching techniques	Observations
Conversion of Monte Carlo simulation codes output to ROOT	Practical activity	4 Hours
Trees		
Analysis of Trees in ROOT	Practical activity	4 Hours
Study of observables in the field of relativistic nuclear physics	Practical activity	8 Hours
(transverse momentum, rapidity, pseudo-rapidity, apparent		
temperatures, etc.) using simulated data		
Centrality and impact parameter for collisions of relativistic	Practical activity	4 Hours
heavy ions. Analysis of simulated data		
Experimental data analysis. Particle separation using TOF and	Practical activity	4 Hours
RICH detectors		
Comparison of simulated and experimental data. Examples	Practical activity	4 Hours

ROOT User Guide - http://root.cern.ch/drupal/content/users-guide

Exemple de aplicații ROOT - http://root.cern.ch/drupal/content/howtos, http://root.cern.ch/drupal/content/example-applications

Manual Linux - http://www.debian.org/doc

Modelul UrQMD - http://urqmd.org

Modelul AMPT - https://karman.physics.purdue.edu/OSCAR/index.php/AMPT

Experimentul BRAHMS de la RHIC - http://www4.rcf.bnl.gov/brahms/WWW/brahms.html

Experimentul CBM de la FAIR - http://www.fair-center.eu/for-users/experiments/cbm.html

Ramona Vogt - Ultrarelativistic Heavy Ion Collisions, Elsevier Publishing, 2007

Al.Jipa, C.Beşliu – Elemente de Fizică nucleară relativistă. Note de curs, Editura Universității din Bucureşti, 2002 C.Beşliu, Al.Jipa – Elemente de Fizică nucleară relativistă. Note de seminar și îndrumător de laborator, Editura Universității din Bucureşti, 1999

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching/learning methods, given the special importance of the discipline for applications in modern high energy field physics, the teachers of the discipline consulted the content of similar topics/courses taught at universities in the country and abroad. The content of the discipline is in accordance with the requirements of employment in research institutes (according to the law).

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	
Lecture	 appropriate approach of the subject coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories 	Oral examination	50%	
 Tutorial	- ability to indicate/analyze specific examples - ability to use specific problem solving methods	Oral examination	50%	
Tutoriai	- ability to analyze the results	Homeworks	3070	
Minimal	Minimal requirements for passing the exam			
requirements				
for passing				
the exam	Requirements for mark 10 (10 points scale)			
	Good knowledge of all the topics from the course content			
	2			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
Conf. dr. Oana Ristea
Conf. dr. Oana Ristea

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.113 Nuclear archaeology

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Nuclear archaeology			
2.2. Teacher	Lect. Dr. Marius CĂLIN			
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Marius CĂLIN			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DA			

3. Total estimated time

5. Iotal estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study	•			
Learning by using one's own course notes, manuals, lecture notes, bibliography				22	
Research in library, study of electronic resources, field research			11		
Preparation for practicals/tutorials/projects/reports/homework			11		
Tutorat					0
Other activities					0
3.7. Total hours of individual s	study				44
3.8. Total hours per semester					100
3.9. ECTS					4

4. Prerequisites (if necessary)

		<u> </u>
4.1. curriculum Atomic Physics, Nuclear Physics, Optics, Quantum Physics, Statistical Physics		Atomic Physics, Nuclear Physics, Optics, Quantum Physics, Statistical Physics
4.2. competences Programming languages, Processing of physical data and numerical methods		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall (preferred, but not mandatory, multimedia equipment)		
5.2. for tutorials/practicals	The experimental modules from the Nuclear Physics Laboratory, the Dosimetry		
	Laboratory, the Computer Network (or individual laptops)		

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,	
	including theoretical models, methods, and experimental techniques.	
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating	
	principles of the main classes of detectors, and their applications in technological and medical	
	fields.	
	R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles	
	and rules of radiological protection.	
	R7. The student/graduate knows the operating principles and applications of specialized software	
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.	
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,	
	astrophysics, and cosmology.	
	R10. The student/graduate should know the norms and ethical principles regarding scientific	
	research in the field, as well as develop a culture of responsibility in intellectual work.	

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy,
	high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene).
	R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research).
	R4. The student/graduate applies and evaluates safety and radiological protection regulations, applicable in educational and research laboratories.
	R7. The student/graduate uses computing codes or software packages for research topics and specific applications.
	R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.
	R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.
·	R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives.
	R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams.
	R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.
	R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community. R10. The student/graduate should demonstrate solidarity, responsiveness, and support for strengthening academic integrity.

7.1 Lecture [chapters]	Teaching techniques	Observations
A brief introduction to nuclear archaeology. Description of nuclear processes that are applied in the dating and analysis of archaeological	Systematic presentation – lecture. Examples	2 Hours
Radiocarbon and K-40/Ar-40 method	Systematic presentation – lecture. Examples	2 Hours
Thermoluminescence dating method (TLD)	Systematic presentation – lecture. Examples	4 Hours
Optic stimulation luminescence dating method (OSL)	Systematic presentation – lecture. Examples	2 Hours
X-ray fluorescence (XRF) and particle-induced X-ray emission analysis (PIXE)	Systematic presentation – lecture. Examples	2 Hours
Rutherford backscattering (RBS) and particle recoil analysis	Systematic presentation – lecture. Examples	2 Hours
Moessbauer spectroscopy and electron spectroscopy for chemical analysis (ESCA)	Systematic presentation – lecture. Examples	2 Hours
Analysis of nuclear reactions and particle-induced gamma-ray emission (PIGE)	Systematic presentation – lecture. Examples	4 Hours

Mass spectrometry (AMS). Tomography. Summary and conclusions	Systematic presentation – lecture. Examples	2 Hours
Neutron activation analysis method. Principle and applications.	Systematic presentation – lecture. Examples	6 Hours

References:

- 1) G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 2) W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 3) H.R. Verma, Atomic and Nuclear Analytical Methods, Springer Verlag, 2007
- 4) W. Loveland, D. Morrissey, G. Seaborg, Modern Nuclear Chemistry, Wiley, 2006
- 5) G. Artioli, Scientific methods and cultural heritage, Oxford University Press, 2010
- 6) H. Edwards, P. Vandenabeele, Analytical archaeometry, RSC Publishing, 2012

7.2 Tutorials	Teaching techniques	Observations
Radiocarbon dating	Systematic presentation	2 Hours
Analysis by X-ray fluorescence and PIXE	Systematic presentation	4 Hours
The use of thermoluminescence for dating archaeological objects	Systematic presentation	4 Hours
Moessbauer spectroscopy and analysis of tomograms	Systematic presentation	2 Hours
Neutron activation of a given sample and extraction of relevant information	Systematic presentation	6 Hours
Experimental data analysis from relevant literature	Systematic presentation	10 Hours

References:

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the interest of different scientific communities (archaeology, history, history of art, etc.), the subject holder consulted the content of similar subjects taught at universities abroad.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 The ability to exemplify; The clarity, coherence and brevity of the exposition Correct use of calculation models, formulas and relationships; In-depth application of knowledge 	written test	70%
Tutorial	Knowing and using experimental techniques; oral examination 30% - Interpretation of results;		30%
Minimal requirements for passing the exam			

Date, Teacher's

name and signature,

13.07.2025 Lect. Dr. Marius CĂLIN

Practicals/Tutorials/Project instructor(s),

name and signature

Lect. Dr. Marius CĂLIN

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026 DFC.114 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	Conf. Dr. Cătălin Berlic
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation verificare 2.7.Classification DC

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study			3	
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research					6
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				25	
3.8. Total hours per semester				25	
3.9. ECTS				1	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat
	within 30 calendar days from the beginning of the semester. The host organization
	must be listed in the National NGO Register ([www.just.ro/registrul-national-
	ong](http://www.just.ro/registrul-national-ong)) or included in the list of validated host
	organizations at the Faculty of Physics.
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.
Responsibility and autonomy	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Project	- Running the volunteer internship.		100%
	- Volunteer activity recognition file		
Minimal			
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department

name and signature

Academic year 2025/2026 DFC.205 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	Conf. Dr. Cătălin Berlic
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification DC

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research			6		
Preparation for practicals/tutorials/projects/reports/homework			6		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			25		
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	•
5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within
	the University of Bucharest), addressed to the Dean and submitted to the Secretariat
	within 30 calendar days from the beginning of the semester. The host organization
	must be listed in the National NGO Register ([www.just.ro/registrul-national-
	ong](http://www.just.ro/registrul-national-ong)) or included in the list of validated host
	organizations at the Faculty of Physics.
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.
Responsibility and autonomy	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Project	- Running the volunteer internship.	The volunteer's activity report,	100%
	- Volunteer activity recognition file	in written format - Annex 2	
		of the Regulation on volunteer	
		credits from the University of	
		Bucharest. 50%	
		Certificate issued by the	
		host organization showing	
		the number of volunteering	
		hours completed, as well	
		as a brief evaluation of the	
		volunteer's activity - Annex 3	
		of the Regulation on volunteer	
		credits from the University of	
		Bucharest. 50%	
Minimal The existence of the volunteer's activity report as well as a Certificate issued by the host		t organization,	
requirements indicating the number of volunteer hours completed and a brief evaluation of the v		d and a brief evaluation of the volun	teer's activity.
for passing	for passing The Volunteering Committee at the Faculty of Physics reviews the aforementioned documents		locuments and
the exam assigns the rating Accepted/Rejected.			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department name and signature

Academic year 2025/2026

DFC.210 Complements of nuclear and photonuclear reactions

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

	ourse unit			
2.1. Course unit title		Complements of nuclear and photonuclear reactions		
2.2. Teacher		Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea		
2.3. Tutorials/Practicals instructor(s)		Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea		
2.4 Yea	ar of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DA		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	18
Research in library, study of electronic resources, field research			9		
Preparation for practicals/tutorials/projects/reports/homework				8	
Tutorat				0	
Other activities			0		
3.7. Total hours of individual study			35		
3.8. Total hours per semester			75		
3.9. ECTS			3		

4. Prerequisites (if necessary)

4.1. curriculum	Nuclear Physics, Interaction of ionizing radiations with matter, Detection methods in Atomic ar	
	Nuclear Physics, Nuclear structure an reaction models, Quantum Physics	
4.2. competences	Knowledge on nuclear models, ability in data processing and analysis and to identify and exploit	
	available information resources.	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room equipped with internet connection and video-projector.
5.2. for tutorials/practicals	Computing power and internet. Nuclear codes and data bases.

6. Learning outcomes

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,
	including theoretical models, methods, and experimental techniques.
	R7. The student/graduate knows the operating principles and applications of specialized software
	for modeling atomic and nuclear processes and for analyzing experimental and simulated data.
	R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles,
	astrophysics, and cosmology.
	R9. The student/graduate has in-depth knowledge of the mechanisms of nuclear fission and fusion
	processes, nuclear structure models, and their applications in energy and technology.

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R7. The student/graduate uses computing codes or software packages for research topics and specific applications. R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field. R9. The student/graduate is capable of analyzing and comparing different nuclear processes, using theoretical models and computational tools to evaluate nuclear reactions and energy production.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development. R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community. R9. The student/graduate can participate in projects concerning the sustainable development of nuclear energy sources, taking responsibility for evaluating the scientific, technological, and ethical impact of adopted decisions.

7. Contents

7.1 Lecture [chapters]	Teaching techniques		Observations	
Review of reaction mechanisms and their modeling. Reaction mechanisms at intermediate energies. Preequilibrium models. Semi-classical approach.	- lecture.	xposition Heuristic Examples	6 Hours	
Exciton model. Exciton configurations. Ocuppation probabilities. Master equation. Emission rates. Particle-hole state densities. Hybrid model.	- lecture.	xposition Heuristic Examples	4 Hours	
Quantum preequilibrium models. Conceptual differences between quantum and semiclassical models. Multi-step direct and multi-step compound models. Monte-Carlo treatment.	•	xposition Heuristic	2 Hours	
Characteristics of heavy ion induced reactions. Fusion cross section calculation. Fission barrier. Moments of inertia. Level densities.	- lecture.	xposition Heuristic Examples	8 Hours	

References:

- 1. M.Herman et al, EMPIRE https://www-nds.iaea.org/empire/index.html
- 2. E. Gadioli and P.E. Hodgson: Preequilibrium Nuclear Reactions, Oxford University Press, 1992
- 3. G. Vladuca, Elemente de Fizica Nucleara, Vol.II, Ed. Universitatii din Bucuresti
- 4. Lecture Notes
- 5. recommended chapters from courses and textbooks accessible on-line

7.2 Tutorials	Teaching techniques	Observations
Calculation of preequilibrium contribution to neutron, proton,	Performing calculaions	12 Hours
alpha and photon emission using the reaction models	employing models, codes	
implemented in sevearal modules included in the EMPIRE	and data bases. Analyzing	
code: PCROSS, DEGAS (exciton model), TRISTAN+ORION	and interpreting results.	
(multistep direct, multi-step compound), HMS (Monte Carlo)	Examples.	

Calculation of cross sections and emission spectra for heavy ion	Performing calculaions 8 Hours
induced reactions using the EMPIRE code.	employing models, codes
	and data bases. Analyzing
	and interpreting results.
	Examples.

References:

- 1. M.Herman et al, EMPIRE https://www-nds.iaea.org/empire/index.html
- 2. E. Gadioli and P.E. Hodgson: Preequilibrium Nuclear Reactions, Oxford University Press, 1992
- 3. G. Vladuca, Elemente de Fizica Nucleara, Vol.II, Ed. Universitatii din Bucuresti
- 4. Lecture Notes

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Knowledge on modeling the mechanisms of the nuclear reactions induced by different types of projectiles with low and intermediate energies is crucial for the fundamental and the applied nuclear physics. The content of this course is the result of teaching and research expertise, of the analysis of similar courses and of the interaction with research institutes and professional international organizations. It is also in line with the requirements/expectations of the potential employers of our master graduates.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 appropriate approach of the subject coherence and clarity of exposition correct use of equations /physical models and theories ability to indicate/analyze specific examples 	Oral examination	60%
Tutorial	Managing the models implemented in the computer codes and the input/output files to calculate reaction nuclear data.	Homeworks. Reaction data calculations.	40%
Minimal requirements for passing the exam	Requirements for mark 5 (10 points scale) Correct treatment of specified subjects.		

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Prof. dr. Mihaela Sin, Conf. dr. Oana Ristea Ristea

Date of approval

Head of department
name and signature

Academic year 2025/2026

DFC.211 Current experimental problems in Atomic and Nuclear Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans
	Applications

2. Course unit

2.1. Course unit title	Current experimental problems in Atomic and Nuclear Physics		
2.2. Teacher	Conf. Dr. Vasile Bercu, Lect. Dr. Marius Calin		
2.3. Tutorials/Practicals instructor(s)	Conf. Dr. Vasile Bercu, Lect. Dr. Marius Calin		
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification DA		

3. Total estimated time

2. Total estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/20/0
Distribution of estimated time	for study		ii.		
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, b	ibliography	18
Research in library, study of electronic resources, field research			9		
Preparation for practicals/tutorials/projects/reports/homework			8		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			35		
3.8. Total hours per semester			75		
3.9. ECTS					3

4. Prerequisites (if necessary)

	(
4.1. curriculum	All previous compulsory subjects with a focus on Atomic and Nuclear Physics, Particle Physics,
	Astrophysics
4.2. competences	General knowledge of experimental methods, relativistic nuclear physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Videoprojector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics, including theoretical models, methods, and experimental techniques. R7. The student/graduate knows the operating principles and applications of specialized software for modeling atomic and nuclear processes and for analyzing experimental and simulated data. R8. The student/graduate knows advanced concepts in nuclear physics, elementary particles, astrophysics, and cosmology.
Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R7. The student/graduate uses computing codes or software packages for research topics and specific applications. R8. The student/graduate uses modern methods of analysis and numerical simulation, integrating efficiently in international teams and contributing to frontier research in the field.

Responsibility and autonomy

- R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making.
- R7. The student/graduate demonstrates autonomy in using and developing computing programs, taking responsibility for respecting licensing norms and collaborative practices typical of open-source code development.
- R8. The student/graduate participates actively and responsibly in international projects, respecting the scientific, ethical, and collaborative standards of the fundamental physics research community.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Detection of molecular species - Interaction of atoms and	Systematic exposition -	4 Hours
molecules with the surface	lecture. Examples	
Interaction potentials, surface models.	Systematic exposition -	3 Hours
	lecture. Examples	
Processes of physisorption, chemisorption, migration on the	Systematic exposition -	3 Hours
surface	lecture. Examples	
Detectors with new sensitive volumes	Systematic exposition -	4 Hours
	lecture. Examples	
Detectors with extremely large sensitive volumes for	Systematic exposition -	3 Hours
Astrophysics	lecture. Examples	
The need for complex detection systems	Systematic exposition -	3 Hours
	lecture. Examples	

References:

- 1. Andrew Zangwill, Physics at Surfaces, Cambridge 1988
- 2. Molecular Physics Laboratory, the team of the Atomic and Nuclear Physics department
- 3. M.-C. Desjonquères si D. Spanjaard, Concepte de fizica suprafetei, Editura Tehnica 1998
- 4. G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 5. W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 6. Claus Grupen, Astroparticle Physics, Springer-Verlag Berlin Heidelberg 2005
- 7. L. Pandola, Overview of the European Underground Facilities, arXiv:1102.020

7.3 Practicals	Teaching techniques	Observations
Detection of molecular species, gas detectors	Practical activity	2 Hours
Calculation of surface atom interaction potentials	Practical activity	2 Hours
Surface atom collisions - simulations by molecular dynamics	Practical activity	3 Hours
Energy distribution at the basal planes of graphite in inelastic collisions with xenon atoms	Practical activity	3 Hours
Simulations for detectors		10 Hours

References:

- 1. Andrew Zangwill, Physics at Surfaces, Cambridge 1988
- 2. Molecular Physics Laboratory, the team of the Atomic and Nuclear Physics department
- 3. M.-C. Desjonquères si D. Spanjaard, Concepte de fizica suprafetei, Editura Tehnica 1998
- 4. G.F. Knoll, Radiation Detection and Measurement, Wiley, 2000
- 5. W.R.Leo, Techniques for Nuclear and Particle Physics Experiments, (Springer-Verlag, Berlin, 1987 and 2003).
- 6. Claus Grupen, Astroparticle Physics, Springer-Verlag Berlin Heidelberg 2005
- 7. L. Pandola, Overview of the European Underground Facilities, arXiv:1102.020

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to establish the content of the course and the laboratory, the choice of teaching/learning methods, the analytical programs of similar subjects taught at universities in the country and abroad were consulted. The subject content is in accordance with the requirements for employment as a physicist in physics research institutes and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	Knowledge of theoretical notions	Written exam and oral	50%
		assessment	
Tutorial			50%
Minimal	Requirements for mark 5 (10 points scale)		
requirements	Completion of all laboratory work and grade 5 in the laboratory colloquium		
for passing	The correct exposure of the indicated subjects to obtain a score of 5 in the final exam.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Dr. Vasile Bercu, Lect. Dr. Conf. Dr. Vasile Bercu, Lect. Dr. Marius

Marius Calin Calin

Date of approval Head of department

name and signature

Academic year 2025/2026 DFC.212 Nuclear security

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

	2.1. Course unit title	Nuclear security	
2.2. Teacher		Lect. Dr. Marius CĂLIN, CS III Andrei APOSTOL	
2.3. Tutorials/Practicals instructor(s)		CS III Andrei APOSTOL, drd. Alexandru BEREVOIANU	
	2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification DA	

3. Total estimated time

1	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
2.4 57 - 11	2514			
3.4. Total hours per semester 40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/20/0
Distribution of estimated time for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography				30
Research in library, study of electronic resources, field research			15	
Preparation for practicals/tutorials/projects/reports/homework			15	
Tutorat				0
Other activities				0
3.7. Total hours of individual study			60	
3.8. Total hours per semester			100	
3.9. ECTS			4	

4. Prerequisites (if necessary)

4.1. curriculum	Atomic Physics, Nuclear Physics, Optics, Quantum Physics, Statistical Physics
4.2. competences	Programming languages, Processing of physical data and numerical methods

5. Conditions/Infrastructure (if necessary)

	5.1. for lecture	Lecture hall (preferred, but not mandatory, multimedia equipment)	
5.2. for tutorials/practicals Experimental modules from the Nuclear Forensics Laboratory (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the second of the Nuclear Forensics (NIPNE-RO) and processing the Nuclear Forensics (NIPNE-RO) and processing the Nuclear Forensics (NIPNE-RO) and processing the NIPNE-RO) and processing the NIPNE-RO) and processing the NIPNE-RO) and the NIPNE-RO (NIPNE-RO) and the		Experimental modules from the Nuclear Forensics Laboratory (NIPNE-RO) and particle	
		accelerators in NIPNE-HH, computer network (or individual laptops)	

6. Learning outcomes

Knowledge	R1. The student/graduate deeply understands the principles of atomic and nuclear physics,	
	including theoretical models, methods, and experimental techniques.	
	R2. The student/graduate knows the mechanisms of radiation interaction with matter, the operating	
	principles of the main classes of detectors, and their applications in technological and medical	
	fields.	
	R3. The student/graduate knows and understands the operating principles and applicability of	
	fundamental equipment used in each subfield of atomic and nuclear physics.	
	R4. The student/graduate knows the fundamental concepts of dosimetry as well as the principles	
	and rules of radiological protection.	
	R5. The student/graduate has advanced knowledge of the behavior of radionuclides in the	
	environment, as well as of the natural and anthropogenic processes that influence environmental	
	radioactivity.	
	R10. The student/graduate should know the norms and ethical principles regarding scientific	
	research in the field, as well as develop a culture of responsibility in intellectual work.	

Skills	R1. The student/graduate applies theoretical concepts in various related fields (nuclear energy, high-energy physics, cosmology and astrophysics, nuclear medicine, radiation protection, and radiological hygiene). R2. The student/graduate uses radiation detection and measurement systems, adapted to various applications (medical, industrial, and fundamental research). R3. The student/graduate collects and interprets data obtained through scientific methods, integrating the results within an analytical framework. R4. The student/graduate applies and evaluates safety and radiological protection regulations, applicable in educational and research laboratories.
	R5. The student/graduate uses sampling, analysis, and data interpretation methods for radioactive contamination, including spectrometry and dosimetry techniques applied in environmental contexts. R10. The student/graduate should assimilate explicit norms (normative texts) or implicit ones (customs, practices) that regulate academic and research conduct in the field.
Responsibility and autonomy	R1. The student/graduate plans and manages complex projects in atomic and nuclear physics, acting autonomously and responsibly in decision-making. R2. The student/graduate efficiently organizes professional activities and working time in accordance with the pursued objectives. R3. The student/graduate analyzes experimental data and extracts relevant information about the quantities of interest. R4. The student/graduate takes responsibility for complying with radiological protection norms and ethical standards in multidisciplinary teams. R5. The student/graduate complies with safety and radiation protection regulations, taking responsibility for risk assessment and the protection of the environment and public health. R10. The student/graduate should demonstrate solidarity, responsiveness, and support for strengthening academic integrity.

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductory notions of nuclear physics: types of radioactive	Systematic exposition -	2 Hours
decays, the law of radioactive decay, half-life, isotopes, isobars	lecture. Examples	
Principles of radiation protection and notions of dosimetry. Types	Systematic exposition -	2 Hours
of ionizing radiations. Notions of nuclear electronics. Types	lecture. Examples	
of detectors used in the detection and measurement of ionizing		
radiations		
Introduction to Nuclear Security: historical evolution and	Systematic exposition -	2 Hours
contemporary relevance. Overview of nuclear security threats.	lecture. Examples	
National legislation and international conventions on nuclear		
security		
Nuclear materials and radioactive sources. Ionizing radiation	Systematic exposition -	2 Hours
detection, alarm adjudication and crime scene security.	lecture. Examples	
Investigations at the scene of the radiological crime. Roles and		
responsibilities. Personal protective equipment and techniques		
for the detection, identification and analysis of radioactive		
materials		
Nuclear Forensics: categorization and characterization of	Systematic exposition -	2 Hours
radioactive materials	lecture. Examples	
Forensic techniques applied to material means of evidence	Systematic exposition -	2 Hours
contaminated with radionuclides	lecture. Examples	
Nuclear Forensic Signatures, Data Analysis and Interpretation	Systematic exposition -	2 Hours
Methods	lecture. Examples	

Interface between Nuclear Security, Nuclear Safety and Nuclear Safeguards. International cooperation in the field of nuclear safety and security: IAEA, ITWG, GICNT, UNODC, UNOCT, UNICRI, JRC EC.	Systematic exposition - 2 Hours lecture. Examples	
Case Studies on Nuclear Security Events	Systematic exposition - 2 Hours lecture. Examples	
Nuclear security in the context of SMR deployment	Systematic exposition - 2 Hours lecture. Examples	

References:

- 1) Nuclear Security Series, IAEA, https://www.iaea.org/resources/nuclear-security-series
- 2) K.J. Moody, P.M. Grant, I.D. Hutcheon, Nuclear Forensic Analysis, CRC Press, Taylor and Francis Group, Boca Raton, FL, Print ISBN:978-0-8493-1513-8. eBook ISBN:978-0-203-50780-3 (2005)
- 3) Gordon R. Gilmore, Practical Gamma-ray Spectrometry 2nd Edition, John Wiley and Sons, Ltd. ISBN: 978-0-470-86196-7 (2008).
- 4) IAEA-TECDOC-2019, Establishing a Nuclear Forensic Capability: Application of Analytical Techniques, https://www-pub.iaea.org/MTCD/publications/PDF/TE-2019web.pdf

7.3 Practicals	Teaching techniques	Observations
High-resolution gamma spectrometry. Commissioning of	Guided practical work	4 Hours
a spectrometric detection chain, energy calibration and		
determination of the absolute efficiency curve. Calculation		
programs relevant to the analysis of nuclear materials and		
radioactive sources		
Dosimeter measurements: Equipment used, legal considerations,		4 Hours
dose limits and protective equipment		
Identification of radioactive isotopes (gamma spectrometry		4 Hours
measurements on nuclear materials or other radioactive		
materials). Determination of the isotopic composition of uranium		
and plutonium and identification of their age: by gamma		
spectrometry, calculation programs and manual calculation.		
Forensic techniques: X-ray fluorescence, papillary traces, optical		4 Hours
microscopy and scanning electron microscopy		
On-site investigations of radiological crime: Personal protective		4 Hours
equipment, detection equipment, legal considerations.		

References:

- 1) Training on measurements in nuclear forensics: Gamma spectrometry, laboratory documents developed by NIPNE-HH within the joint course with the Los Alamos National Laboratory, USA.
- 2) International Atomic Energy Agency (IAEA) Courses, Radiological Crime Scene Investigations
- 3) Gordon R. Gilmore, Practical Gamma-ray Spectrometry 2nd Edition, John Wiley and Sons, Ltd. ISBN: 978-0-470-86196-7 (2008).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in physics and modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 Clarity, coherence and conciseness of presentation; Correct use of calculation models, formulas and relationships; The ability to exemplify; In-depth application of knowledge 	Written exam	70%

Practical	- Knowledge and use of experimental techniques;	Laboratory colloquim	30%
	- Interpretation of the results;		
Minimal	Performing all practical activities during the semester		
requirements	• Obtaining grade 5 by adding up the points obtained for the activities during the course and the exam,		
for passing	in accordance with the specified weight		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Marius CĂLIN, CS III CS III Andrei APOSTOL, drd. Alexandru

Andrei APOSTOL BEREVOIANU

Date of approval Head of department

name and signature

Academic year 2025/2026 DFC.213 Volunteering

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics	
1.4. Field of study	Fizică/Physics	
1.5. Course of study	Master	
1.6. Study program	Physics of Atom, Nucleus, Elementary Particles, Astrophysics ans	
	Applications	

2. Course unit

2.1. Course unit title	Volunteering		
2.2. Teacher	Conf. Dr. Cătălin Berlic		
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7.Classification DC		

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time for study					
Learning by using one's own	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research			6		
Preparation for practicals/tutorials/projects/reports/homework			6		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			25		
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Submission of a request (Annex 1 of the Regulation on Volunteer Credits within		
	the University of Bucharest), addressed to the Dean and submitted to the Secretaria		
	within 30 calendar days from the beginning of the semester. The host organization		
	must be listed in the National NGO Register ([www.just.ro/registrul-national-		
	ong](http://www.just.ro/registrul-national-ong)) or included in the list of validated host		
	organizations at the Faculty of Physics.		
5.2. for tutorials/practicals			

6. Learning outcomes

Knowledge	R11. The student/graduate should know the principles of communication and collaboration in multidisciplinary teams and the hierarchical structure specific to organizations.
Skills	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.
Responsibility and autonomy	R11. The student/graduate should apply effective communication and coordination techniques in diverse teams, managing tasks and professional relationships at various hierarchical levels.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of the subject is elaborated in accordance with the content of similar subjects taught at universities in the country and abroad. The content has been harmonized with the requirements imposed by employers in the field of industry, research, university and pre-university education of all degrees.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Project	- Running the volunteer internship.		100%
	- Volunteer activity recognition file		
Minimal	Obţinerea notei 5		
requirements	- Promovarea colocviului de laborator		
for passing	- Obtinerea notei 5 prin însumarea punctelor obținute la activitățile de pe parcurs și examen, în acord		
the exam	cu ponderile specificate		
	Obţinerea notei 10		
	- Capacitate demonstrată de analiză a fenomenelor și proceselor		
	- Rezolvarea corectă si argumentata a tuturor subiectelor		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Dr. Cătălin Berlic

Date of approval Head of department

name and signature