Programul de studii: Photonics, Plasma and Lasers

Domeniul de studii: Fizică/Physics

Ciclul de studii: Master

Discipline obligatorii:

- DI.101 Quantum Statistical Physics
- DI.102 Group Theory and Applications in Physics
- DI.103 Experimental Methods in Physics
- DI.104 Optical properties of surfaces and nanostructures
- DI.105 Ethics and academic integrity
- DI.108 Interferential and polarimetric methods in photonics
- DI.201 Nonlinear optics
- DI.202 Physical processes in intense laser fields
- DI.208 Research activity (80 hours)
- DI.209 Finalization of master thesis (40 hours)
- DI.210 Susținerea publica a lucrării de disertație

Discipline optionale:

- DO.106.1 Spectroscopy of condensed states and of materials for energy conversion
- DO.106.2 Processing with laser beams
- DO.109.1 Quantum optics
- DO.109.2 Applications of modeling and simulations in photonics
- DO.110.1 High-power ultrashort-pulse lasers
- DO.110.2 Modern computational methods in spectroscopy and imaging
- DO.111.1 Digital processing of images and optical fields
- DO.111.2 Photonics and optically anisotropic media
- DO.203.1 Plasma spectroscopy
- DO.203.2 Advanced plasma physics
- DO.204.2 Thin films optics
- DO.204.2 Design of optical systems
- DO.211.1 Modeling methods in plasma physics
- DO.211.2 Homogeneous and inhomogeneous waveguides. Applications

Discipline facultative:

- DFC.107 Volunteering
- DFC.112 Fundamental processes in ionized gases
- DFC.113 Elemenets of Complexity theory
- DFC.114 Volunteering
- DFC.205 Volunteering
- DFC.206 Applied optics
- DFC.207 Plasmonics and metamaterials
- DFC.212 Volunteering

Academic year 2025/2026 DI.101 Quantum Statistical Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Quantum Statistical Physics
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography				30	
Research in library, study of electronic resources, field research			30		
Preparation for practicals/tutorials/projects/reports/homework			15		
Tutorat			0		
Other activities			22		
3.7. Total hours of individual study			97		
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

	· • • • • • • • • • • • • • • • • • • •
4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

- · · · · · · · · · · · · · · · · · · ·	
5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques	Observations
Quantum states. Microstates and macrostates of a	Systematic exposition -	1 Hour
quantum system. Statistical (density) operator:	lecture. Examples	
definition and properties. Time evolution.		
Quantum entropy. Boltzmann-von Neumann	Systematic exposition -	3 Hours
formula. Physical interpretation. Principle of	lecture. Examples	
maximum entropy. Equilibrium distributions.		
Statistical operator in equilibrium. BoltzmannGibbs formula.		

Partition functions: definition and properties. Entropy in thermodynamic equilibrium, natural variables. Equilibrium statistical ensembles. Ensemble averages. Canonical, grand-canonical	Systematic exposition - lecture. Examples	2 Hours
and microcanonical ensembles		
The indistinguishability of quantum particles.	Systematic exposition -	4 Hours
Occupations number representation. Pauli principle.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent fermions. Fermi-Dirac statistics.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent bosons. Bose-Einstein statistics.	lecture. Examples	
Applications.		

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică
- 3. K. Huang, Statistical Mechanics, John Wiley and sons, 1987
- 4. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017.

7.2 Tutorials	Teaching techniques	Observations
The statistical thermodynamics of the ideal	Problem solving	4 Hours
fermionic gas. White dwarf stars. Neutron stars.		
The statistical thermodynamics of the ideal bosonic	Problem solving	4 Hours
gas.		
Statistical mechanics of lattice vibrations. Phonons.	Problem solving	2 Hours
Debye model.		
Heisenberg model and applications.	Problem solving	4 Hours

References:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. D. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, IOP 1999.
- 3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity and coherence of exposition - Correct use of the methods/ physical models - The ability to give specific examples	Written test and oral examination	60%
Tutorial	Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam			

Date, Teacher's

name and signature,

13.07.2025 Prof. Dr. Virgil Baran

Practicals/Tutorials/Project instructor(s),

name and signature

Lect. Dr. Virgil V. Baran

Date of approval

15.07.2025

Head of department

name and signature

Lect. dr. Rozana ZUS

Academic year 2025/2026 DI.102 Group Theory and Applications in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Group Theory and Applications in Physics
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Cristian Iorga
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	49
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				24	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				97	
3.8. Total hours per semester			125		
3.9. ECTS			5		

4. Prerequisites (if necessary)

4.1. curriculum	Linear algebra, Quantum mechanics
4.2. competences	Knowledge about: mechanics, atomic physics, solid state physics, nuclear physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductory notions:symmetries of a physical	Systematic exposition -	1 Hour
system, the role of group theory in physics, groups	lecture. Examples	
clasification.		
Group axioms, group multiplication table,	Systematic exposition -	1 Hour
subgroups, mappings of groups, direct product of	lecture. Examples	
groups.		
Conjugate elements, equivalence classes, invariant	Systematic exposition -	2 Hours
subgroups, cosets, quotient group	lecture. Examples	

Matrix representation of a group, equivalent	Systematic exposition -	2 Hours
representations, irreducible representation. Schur;s	lecture. Examples	
lemma.		
Orthogonality relations for irreducible	Systematic exposition -	2 Hours
representations of a finite group, inequivalent	lecture. Examples	
representations for finite groups, characters and		
their orthogonality relations, character table.		
Group theory and quantum mechanics. From	Systematic exposition -	2 Hours
degeneracy to group representations:classification	lecture. Examples	
of the eigenvalues and of the eigenstates of energy		
according to the irreducible representations of		
symmetry group. Applications.		
Discrete symmetries. Rotation group in quantum	Systematic exposition -	4 Hours
mechanics. Tensor operators. Wigner-Eckart	lecture. Examples	
theorem. Aplications in atomic and nuclear physics.		

- 1. J.F. Corwell, Group theory in physics. An Introduction. Academic Press, 1997.
- 2. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 3. W.K. Tung, Group theory in physics, World Scientific, 1985

7.2 Tutorials	Teaching techniques	Observations
Basic group theory. Aplications.	Problem solving	2 Hours
Discrete groups representations.	Problem solving	2 Hours
Permutation groups. Dihedral groups.	Problem solving	2 Hours
Group theory and harmonic motion.	Problem solving	2 Hours
Unitary representations for rotations, Wigner	Problem solving	4 Hours
matrices, Spherical tensors.		
Discrete translations.	Problem solving	2 Hours

References:

- 1. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 2. W.K. Tung, Group theory in physics: Problems and solutions, World Scientific, 1991
- 3. S. Sternberg, Group theory and physics, Cambridge University Press, 1994

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
Tutorial	- Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50% of exam score.		

Date, Teacher's

name and signature,

13.07.2025 Prof. Dr. Virgil Baran

Practicals/Tutorials/Project instructor(s),

name and signature

Lect. Dr. Cristian Iorga

Date of approval

15.07.2025

Head of department

name and signature

Lect. dr. Rozana ZUS

Academic year 2025/2026 DI.103 Experimental Methods in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

21 Course unit			
2.1. Course unit title	Experimental Methods in Physics		
2.2. Teacher	Conf. dr. Ovidiu TOMA Conf. dr. Adriana BALAN		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Ovidiu TOMA Conf. dr. Adriana BALAN		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	42
Research in library, study of electronic resources, field research				21	
Preparation for practicals/tutorials/projects/reports/homework				20	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				83	
3.8. Total hours per semester				125	
3.9. ECTS			5		

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Solid State Physics I, Electrodynamics, Quantum mechanics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)		
5.2. for tutorials/practicals	Research infrastructure for morphological, optical, magnetic and microstructural		
	characterizations.		

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques	Observations
Atomic force microscopy (AFM) – physical principles. Working modes (non-contact, contact). Characterization of surface morphology. Magnetic force microscopy (MFM), Scanning tunneling microscopy (STM). Applications.	Systematic exposition - lecture. Examples.	4 Hours
Photoluminescence. Light Emitting Diodes. Laser diodes.	Systematic exposition - lecture. Examples.	6 Hours

Ellipsometry. Physical principles. Optical coefficients of thin	Systematic exposition -	12 Hours
films. Spectroscopic ellipsometry. Measurement principles for	lecture. Examples.	
(Ψ, Δ) . Instrumentation, types of ellipsometers (RAE, RAEC,		
RCE, PME). Data analysis. Construction of optical models.		
NIR-VIS-UV Spectrophotometry applied in the optical	Systematic exposition -	6 Hours
investigations of semiconducting thin films. lecture. Examples.		

- 1. M. Nastasi, J.W. Mayer, Y. Wang, Ion beam analysis Fundamentals and applications (CRC Press, Boca Raton, USA, 2015).
- 2. M. Fox, Optical properties of solids (Oxford University Press, Oxford, UK, 2001).
- 3. R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light, North-Holland, 1999.
- 4. H. Fujiwara, Spectroscopic ellipsometry: principles and applications, Wiley, 2007.
- 5. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale, Springer, 2013.

7.3 Practicals	Teaching techniques	Observations
AFM in contact and non-contact mode. Surface morphology	Guided practical work	4 Hours
characterizations.		
Ellipsometrical measurements. Dispersion of optical coefficients	Guided practical work	6 Hours
of thin films for different material structures.		
The recording of absorption spectra using a double-beam UV-	Guided practical work	4 Hours
VIS-NIR spectrophotometer.		
D. C.		

References:

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

Activity type	Assessment criteria	Assessment methods	Weight în
2 21			final mark
Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam	60%
Practical	- Knowledge and correct use of specific experimental techniques - Data processing and analysis;	Colloquium	40%
Minimal requirements for passing the exam	Correct solving of subjects indicated as required for	r obtaining mark 5.	ı

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf. dr. Ovidiu TOMA Conf. dr. Conf. dr. Ovidiu TOMA Conf. dr. Adriana BALAN

Adriana BALAN

Date of approval

Head of department
name and signature
15.07.2025

Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.104 Optical properties of surfaces and nanostructures

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Optical properties of surfaces and nanostructures		
2.2. Teacher	Associate Professor Doiniţa Bejan		
2.3. Tutorials/Practicals instructor(s)	Associate Professor Doiniţa Bejan		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

5. Total estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study	1			
Learning by using one's own o	ourse note	es, manuals, lectur	e notes,	bibliography	47
Research in library, study of el	ectronic re	esources, field res	earch		24
Preparation for practicals/tutorials/projects/reports/homework					23
Tutorat					0
Other activities					0
3.7. Total hours of individual study				94	
3.8. Total hours per semester			150		
3.9. ECTS					6

4. Prerequisites (if necessary)

-	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Taking courses: Optics, Spectroscopy and Lasers, Quantum Mechanics, Solid State Physics,
	Fundamentals of Atomic Physics.
4.2. competences	Use of software packages for data analysis and processing

${\bf 5.\ Conditions/Infrastructure\ (if\ necessary)}$

•		
5.1. for lecture	Multimedia equipped class (videoprojector)	
5.2. for tutorials/practicals	Spectroscopy laboratory	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques	Observations
Surface crystallography: direct lattice (three-dimensional lattices,	Systematic exposition -	4 Hours
two-dimensional lattices, surface relaxation and reconstruction),	lecture. Examples	
reciprocal volume lattice, surface lattice, Brillouin zones.		
Investigation of direct surface structure by scanning tunneling	Systematic exposition -	6 Hours
microscope (STM). Investigation of reciprocal structure by X-ray	lecture. Examples	
diffraction (S-XRD) and low-energy electron diffraction (LEED).		
Electronic surface structure: jelly (jellium) model; quasi-free	Systematic exposition -	6 Hours
electron model, surface states, image states; hard bond model.	lecture. Examples	

Ultraviolet photoemission spectroscopy: transition moment;	Systematic exposition -	6 Hours
physisorption; chemisorption; band structure characterization.	lecture. Examples	
Growth and characterization of semiconductor nanostructures:	Systematic exposition -	2 Hours
synthesis methods; characterization methods.	lecture. Examples	
Electronic states in 3D semiconductors: energy bands in 3D	Systematic exposition -	2 Hours
semiconductors; effective mass approximation; semiconductor	lecture. Examples	
alloys.		
Low dimensionality systems: electronic states in low	Systematic exposition -	2 Hours
dimensionality structures; density of states. Excitons. Optical	lecture. Examples	
transitions in nanostructures		

- 1. 1. A. Zangwill, Physics at surfaces, Cambridge University Press (1988).
- 2. M. C. Desjonquères, D. Spanjard, Concepts in surface physics, Springer-Verlag, Heidelberg, 1993/ M. C. Desjonqueres, D. Spanjard, Concepte de fizicasuprafetei, Ed. Tehnica, 1998.
- 3. T. A. Delchar, and D. P. Woodruff, Modern Techniques of Surface Science, Cambridge Solid State Science Series, 1990.
- 4. H. Ibach, Physics of surfaces and interfaces, Springer Verlag, Berlin Heidelberg, 2006.
- 5. D. Bejan, Structura si caracterizarea suprafetelor, Ed. Univ. București, 2007
- 6. E. C. Niculescu, Efectul laser asupra sistemelor mezoscopice, Ed. Printech, 2009
- 7. Kamakhya Prasad Ghatak, Sitangshu Bhattacharya, Debashis De, Photoemission from optoelectronic materials and their nanostructures, Springer 2012
- 8. Paul Harisson, Alex Valvanis, Quantum wells, wires and dots (theoretical and computational physics of semiconductor nanostructures), John Wiley and Sons, 2016
- 9. Doina Bejan, Course notes, 2024

7.3 Practicals	Teaching techniques	Observations
Determining the symmetry of surface structures and superstructures.	Guided practical activity	4 Hours
Construction of the first Brillouin zone for CFC and CVC surfaces(111), (110), (100) starting from the volume structure	Guided practical activity	4 Hours
Surface structure determination from LEED images for reconstructed SnFe(100) and SiC(111).	Guided practical activity	4 Hours
Matlab programming of the tunneling effect (STM).	Guided practical activity	4 Hours
Matlab programming of pseudopotentials.	Guided practical activity	4 Hours
Spectral terms of diatomic molecules	Guided practical activity	2 Hours
Optical properties of quantum wells with different confinement potentials	Guided practical activity	6 Hours

References:

- 1. 1. A. Zangwill, Physics at surfaces, Cambridge University Press (1988).
- 2. M. C. Desjonquères, D. Spanjard, Concepts in surface physics, Springer-Verlag, Heidelberg, 1993/ M. C. Desjonqueres, D. Spanjard, Concepte de fizica suprafetei, Ed. Tehnica, 1998.
- 3. D. Bejan, Structura si caracterizarea suprafetelor, Ed. Univ. Bucureşti, 2007
- 4. E. C. Niculescu, Efectul laser asupra sistemelor mezoscopice, Ed. Printech, 2009
- 5. Paul Harisson, Alex Valvanis, Quantum wells, wires and dots (theoretical and computational physics of semiconductor nanostructures), John Wiley and Sons, 2016
- 6. Doina Bejan, Course notes, 2024

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, the subject holders consulted the contents of similar subjects taught at universities in the country and abroad (University of Paris-Sud, Faculty of Applied Sciences (Polytechnic University, Bucharest)). The content of the subject is in accordance with the requirements for employment in research institutes in physics and materials science and in teaching (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity, coherence and brevity of exposition; Correct use of the methods/ physical models The ability to give specific examples 	Written test	60%
Practical	- Application of specific solution methods for the given problem;	continuous evaluation	40%
Minimal requirements for passing the exam	Mandatory attendance: 50% of classes and laboratory correct presentation of the topics indicated for obtaining the contract of the topics indicated for obtaining the contract of the contract		am.

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature name and signature,

13.07.2025 Associate Professor Doiniţa Bejan Associate Professor Doiniţa Bejan

Head of department Date of approval

name and signature Lect. dr. Rozana ZUS

15.07.2025

Academic year 2025/2026 DI.105 Ethics and academic integrity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Ethics and academic integrity	
2.2. Teacher	lector dr.Sanda Voinea	
2.3. Tutorials/Practicals instructor(s)		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification	

3. Total estimated time

5. Total estilliated tille					
3.1. Hours per week	1	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	14	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study		,		
Learning by using one's own c	ourse notes	s, manuals, lectur	e notes, bibl	iography	31
Research in library, study of electronic resources, field research			15		
Preparation for practicals/tutorials/projects/reports/homework			15		
Tutorat			0		
Other activities					0
3.7. Total hours of individual study			61		
3.8. Total hours per semester					75
3.9. ECTS					3

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques		Observations	
Moral evaluation frameworks. Fundamental concepts of ethics.	Lecture.	Example.	2 Hours	
	Discussion.			
Ethics and the scientific community.				
Criteria for moral evaluation: consequences / intentions,				
virtues.				
Academic integrity: institutional tools.	Lecture.	Example.	2 Hours	
	Discussion.			
Codes and ethics commissions.				

Principles of research ethics	Lecture. Discussion.	Example.	2 Hours
Challenges and dilemmas in research ethics	Lecture. Discussion.	Example.	2 Hours
Publication ethics: authorship and co-authorship	Lecture. Discussion.	Example.	2 Hours
Access to resources (fairness and equity in academic organizations and research teams)	Lecture. Discussion.	Example.	2 Hours
Deontology of teamwork in scientific research	Lecture. Discussion.	Example.	2 Hours

Julian Baggini, Peter S. Fosl, A Compendium of Ethical Concepts and Methods, Blackwell Publishing, 2014.

Blaxter, L, Hugh, C. Tight, L. How to research, New York, 2006

Angelo Corlett. "The Role of Philosophy in Academic Ethics", Journal of Academic Ethics, Volume 12, Issue 1, pp 1–14, 2014

Codul de etică al Universității din București https://unibuc.ro/wp-content/uploads/2021/01/CODUL-DE-ETICA-SI-DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf

Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)

Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.

Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002

Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.

James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.

Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dilemma: Talking about Plagiarism and Academic Integrity in the Digital Age", English Journal 100.6, pp. 47–53, 2011

Anthony Weston, A Practical Companion to Ethics, Oxford University Press, 2011

Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006

Bretag, T. (ed), Handbook of Academic Integrity, Singapore: Springer, 2016

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical implications for impact. Not only abstract arguments and positions are discussed and evaluated, but also issues related to the ethical infrastructure of academic organizations or moral decision-making tools that can be used by students in their academic work and future professional life

Activity type	Assessment criteria	Assessment methods	Weight	în
			final mark	
Minimal	Achieving the grade of ADMISSION in the essay,	attending at least 50% of the course	ès	
requirements				
for passing				
the exam				

Date, Teacher's

name and signature,

13.07.2025 lector dr.Sanda Voinea

 $Practicals/Tutorials/Project\ instructor(s),$

name and signature

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.108 Interferential and polarimetric methods in photonics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Interferential and polarimetric methods in photonics		
2.2. Teacher	Conf. dr. Ovidiu Toma		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Ovidiu Toma		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time for study					
Learning by using one's own course notes, manuals, lecture notes, bibliography				72	
Research in library, study of electronic resources, field research					36
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS			8		

4. Prerequisites (if necessary)

4.1. curriculum	Geometrical and Wave Optics, Spectroscopy and Lasers
4.2. competences	Using software packages for data analyses and processing

5. Conditions/Infrastructure (if necessary)

· · · · · · · · · · · · · · · · · · ·	
5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7.1 Lecture [chapters]	Teaching techniques	Observations
Wave interference (general case, special cases). Coherence	Systematic exposition –	4 Hours
of waves. Two-Wave Interference: Wavefront Splitting.	lecture. Examples	
Interference devices of the Young – Fresnel type. Two-Wave		
Interference: Amplitude Division.		
Two-wave interferometers: Michelson, Fizeau, Fizeau -	Systematic exposition –	10 Hours
Michelson, Rayleigh, Jamin, Sirks - Pringsheim, Dyson,	lecture. Examples	
Twyman – Green, Kösters. Multiple wave interferometers: Fabry		
– Perot, Fizeau – Tolanski, Lummer – Gehrcke, interference		
filters.		

Polarization of light, fundamentals. Interference of polarized	Systematic exposition –	8 Hours
light. Elliptically polarized light. Stokes parameters. Poincare	lecture. Examples	
sphere. Crystalline plate between nicols. Chromatic polarization		
in parallel and convergent light. Analyzers and compensators.		
Mathematical description of polarization states. Stokes vectors	Systematic exposition –	6 Hours
for different polarization states. Coordinate transformations. The	lecture. Examples	
Mueller matrix formalism. Mueller polarization imaging.		

- 1. M. Born, E. Wolf, Principles of Optics (6th Ed.), Pergamon Press, London, 1985.
- 2. G.G.Bratescu, Interferometrie aplicata, Ed. Tehnica, Bucuresti, 1984.
- 3. G. Chartier, Introduction to Optics, Springer Verlag, New York, 2005.
- 4. H. Fujiwara, Spectroscopic Ellipsometry, Principles and Applications, John Wiley and Sons, London, 2007.
- 5. O. Toma, E. Dinescu, "Application of the matrix formalism in a Mueller imaging polarimeter", Rom. Rep. Phys., Vol. 60, No.4, p. 1065 1070 (2008).

7.3 Practicals	Teaching techniques	Observations
Study of the Desaine device. Measuring the radii of curvature of	Directed practical activity	4 Hours
lenses.		
Michelson interferometer (classical and laser). Applications in	Directed practical activity	4 Hours
spectroscopy and interference refractometry. Mach – Zehnder		
interferometer.		
Fizeau interferometer (classical and laser). Checking the optical	Directed practical activity	4 Hours
quality on different surfaces.		
Jamin Interferometer. Measurement of refractive indices in gases	Directed practical activity	4 Hours
Fabry – Perot interferometer. Benoit method of exact fractions.	Directed practical activity	4 Hours
The study of polarized light by reflection at the polariscope and	Directed practical activity	4 Hours
the measurement of the Brewster angle at the air-glass reflection.		
Experimental verification of Malus law.		
Study of chromatic polarization in parallel and convergent light.	Directed practical activity	4 Hours
Wavelength dependence of birefringence in liquid crystals.		

References:

1. Interferometry and Polarimetry, O.Toma, C. Sima, Ed. Univ. Buc. 2016.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in modern technology, the teacher consulted the content of similar disciplines from other universities (for example, Universite Angers, France). The content of the discipline is according to the employment requirements in research institutes in Photonics, Physics of lasers and in education (in accordance with the law).

7. Assessin		A .1 1	XX7 1 1 . A
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
T .		TXX ***	
Lecture	Clarity and coherence of exposition	Written test/oral examination	70%
	- Correct use of the methods/ physical models		
	- The ability to give specific examples		
	, , , ,		
Practical	- Knowledge and use of experimental techniques	Laboratory colloquium	30%
	- Interpretation of results	, and and year of the second	
	interpretation of results		
Minimal	Completion of all laboratory work		
Millimai	Completion of all laboratory work.		
requirements	At least 50% of exam score.		
for passing			
the exam			

Date, Teacher's

name and signature,

13.07.2025 Conf. dr. Ovidiu Toma

Practicals/Tutorials/Project instructor(s),

name and signature Conf. dr. Ovidiu Toma

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Rozana ZUS

Academic year 2025/2026 DI.201 Nonlinear optics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State and Biophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Nonlinear optics
2.2. Teacher Prof. dr. Daniela DRAGOMAN	
2.3. Tutorials/Practicals instructor(s)	C.S. I dr. Adrian PETRIS
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes,	manuals, lectur	e notes, bibl	iography	67
Research in library, study of electronic resources, field research				33	
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				133	
3.8. Total hours per semester				175	
3.9. ECTS					7

4. Prerequisites (if necessary)

_	
4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics
4.2. competences	Computational physics abilities. Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet connection)
5.2. for tutorials/practicals	Specifically equipped laboratory

6. Learning outcomes

Knowledge	R2. The student/graduate understands, explains and interprets concepts, theories, models and principles of physics, highlighting practical applications of electromagnetism and light-matter interaction R5. The student/graduate correctly describes physical systems, using specific theories and tools to characterize them. R9. The student/graduate identifies methods, techniques, and laboratory instruments necessary for designing and conducting physical experiments.
Skills	R2. The student/graduate applies the principles and laws of physics in solving theoretical or practical problems in electromagnetism and light-matter interaction, including in partially unpredictable situations R5. The student/graduate collects and interprets data resulting from the application of appropriate scientific methods, integrating the results obtained into an analytical framework. R9. The student/graduate correctly interprets the data and deduces working formulas for calculations with physical quantities, appropriately applying specific fundamental principles and laws.

Res	ponsi	bility
and	autor	omv

- R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations
- R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations.
- R9. The student/graduate demonstrates autonomy in operating and maintaining laboratory equipment, respecting safety and quality standards.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction: Maxwell's equations in dielectric media.	Systematic exposition -	4 Hours
Polarization mechanisms. Parametric nonlinear optical	lecture. Examples.	
phenomena		
Coupled-mode formalism in three-wave mixing	Systematic exposition -	2 Hours
	lecture. Examples.	
Birefringent crystals. The ellipsoid of refractive indices. Light	Systematic exposition -	3 Hours
propagation in anisotropic media. Phase-matching	lecture. Examples.	
Second harmonic generation. The tensor of second order	Systematic exposition -	2 Hours
nonlinear polarization	lecture. Examples.	
Efficiency of second harmonic generation. Design strategies to	Systematic exposition -	2 Hours
maximize the efficiency	lecture. Examples.	
Sum- and difference frequency generation, parametric	Systematic exposition -	3 Hours
oscillations	lecture. Examples.	
Linear and quadratic electro-optic effect. Symmetry of	Systematic exposition -	4 Hours
polarization tensor. Polarization matrices. Applications in	lecture. Examples.	
electromagnetic field modulation	•	
Coupled-mode formalism in four-wave mixing. Third harmonic	Systematic exposition -	3 Hours
generation, phase conjugation	lecture. Examples.	
Propagation of light pulses in nonlinear media. Propagation	Systematic exposition -	5 Hours
regimes. Optical solitons	lecture. Examples.	

References:

- 1. R. Dabu, I. Gruia, A. Stratan, Noțiuni fundamentale de optică neliniară și lucrări de laborator, Editura Univ. Bucuresti, 2005
- 2. B.E.A. Saleh, M.C. Teich, Fundamental of Photonics, 2nd edition, Wiley, 2007, Chapter 21: Nonlinear Optics
- 3. G. New, Introduction to Nonlinear Optics, Cambridge University Press, 2011
- 4. R. Boyd, Nonlinear Optics, 3rd edition, Academic Press, 2008
- 5. C. Manzoni, G. Cerullo, Design criteria for ultrafast optical parametric amplifiers, J. Opt. 18, 103501, 2016, open access
- 6. D. Dragoman, Optică neliniară, Editura Univ. Bucuresti, 2022
- 7. D. Dragoman, Lecture notes

7.3 Practicals	Teaching techniques	Observations
Laboratory presentation. Safety instructions	Guided practical work	1 Hour
1. Determination of the third-order nonlinear optical susceptibility by third-harmonic generation (bibliography 1.1 to 1.4)	Guided practical work	4 Hours
2. Measurement of third-order optical nonlinearities by the Z-scan method (bibliography 2.1 to 2.6)	Guided practical work	4 Hours
3. Investigation of third-order nonlinear optical processes by pump-probe interferometry. All-optical spatial light modulation (bibliography 3.1 to 3.4)	Guided practical work	4 Hours
Laboratory colloquium	Guided practical work	1 Hour

- 1.1 R. Boyd, Nonlinear Optics, Third Edition, Elsevier, Academic Press (2008)
- 1.2 P. Butcher, D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press, Cambridge (1990)
- 1.3 A. Petris, P. Gheorghe, T. Braniste, I. Tiginyanu, "Ultrafast third-order nonlinear optical response excited by fs laser pulses at 1550 nm in GaN crystals", Materials 14(12), 3194 (2021)
- 1.4 A. Petris, P. S. Gheorghe, V. I. Vlad, E. Rusu, V. V. Ursaki, I. M. Tiginyanu, Ultrafast third-order optical nonlinearity in SnS2 layered compound for photonic applications, Optical Materials 76, 69-74 (2018)
- 2.1 R. Boyd, Nonlinear Optics, Third Edition, Elsevier, Academic Press (2008)
- 2.2 R. L. Sutherland, Handbook of Nonlinear Optics, Second Edition, Revised and Expanded, Marcel Dekker, Inc., New York, Basel (2003)
- 2.3 M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, "High-sensitivity, single-beam n2 measurements", Optics Letters 14 (17), 955 (1989)
- 2.4 M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam", IEEE Journal of Quantum Electronics 26 (4), 760 (1990)
- 2.5 E. W. Van Stryland, M. Sheik-Bahae, "Z-Scan Measurements of Optical Nonlinearities", in Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzyk and C. W. Dirk, Eds., page 655-692, Marcel Dekker, Inc. (1998)
- 2.6 I. Dancus, V. I. Vlad, A. Petris, T. B. Rujoiu, I. Rau, F. Kajzar, A. Meghea, A. Tane, Z-scan and I-scan methods for characterization of DNA optical nonlinearities, Rom. Rep. Phys 65 (3), 966 (2013)
- 3.1 R. Boyd, Nonlinear Optics, Third Edition, Elsevier, Academic Press (2008)
- 3.2 A. Petris, P. Gheorghe, I. Rau, A. M. Manea-Saghin, F. Kajzar, "All-optical spatial phase modulation in films of dye-doped DNA biopolymer", European Polymer Journal 110, 130-137 (2019)
- 3.3 A. Petris, P. Gheorghe, V. I. Vlad, I. Rau, F. Kajzar, "Interferometric method for the study of spatial phase modulation induced by light in dye-doped DNA complexes", Rom. Rep. Phys 67 (4), 1373-1382 (2015)
- 3.4 I. Dancus, S. T. Popescu, A. Petris, "Single shot interferometric method for measuring the nonlinear refractive index", Optics Express 21(25), 31303-31308 (2013)

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The content of this course is designed to lead to the formation of instrumental-application specific competences (such as the design of optical systems for special applications; the use of models and simulation methods, as well as generating and investigation techniques, of electromagnetic fields with relevant characteristics for certain applications), of interest for research institutes in Laser Physics and/or Physics of Materials and education. Because of the importance of the course for modern applications of high-power lasers, the content and the teaching methods have been put into correspondence with similar courses taught at other universities (Univ. Friedrich Schiller Jena, Germany, Institute of Optics, Univ. of Rochester, USA, Institut d'Optique, Palaiseau, France) as well as with the experimental facilities of the research institutes on the Măgurele platform

9. Assessin	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity, coherence and concision of exposition;	Written exam	67%
	- Correct use of physical models and of		
	specific mathematical methods for solving a given		
	problem;		
	- Ability to exemplify		
Practical	- Use and correct application of experimental	Exam/Laboratory colloquium	33%
	techniques;		
	- Data interpretation		
Minimal	Correct solving of subjects totaling the number of points required for obtaining mark 5 at the written		
requirements	exam.		
for passing	Attendance of all practicals/lab works and mark 5 at colloquium		
the exam			

Date, Teacher's

name and signature,

13.07.2025 Prof. dr. Daniela DRAGOMAN

Practicals/Tutorials/Project instructor(s),

name and signature

C.S. I dr. Adrian PETRIS

Date of approval

15.07.2025

Head of department name and signature

Assoc. prof. Adrian RADU

Academic year 2025/2026 DI.202 Physical processes in intense laser fields

1. Study program

University of Bucharest
Faculty of Physics
Theoretical Physics, Mathematics, Optics, Plasma and Lasers
Fizică/Physics
Master
Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Physical processes in intense laser fields			
2.2. Teacher	Conf. Madalina Boca			
2.3. Tutorials/Practicals instructor(s)	Conf. Madalina Boca			
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification			

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography				iography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS					8

4. Prerequisites (if necessary)

	<u> </u>
4.1. curriculum	Classical electrodynamics, Quantum Mechanics, Numerical methods in Physics
4.2. competences	Knowledge of basic topics in classical electrodynamics and quantum mechanics, ability to
	understand basic numerical algorithms

5. Conditions/Infrastructure (if necessary)

	• • • • • • • • • • • • • • • • • • • •
5.1. for lecture	Room with videoprojector, acces to internet
5.2. for tutorials/practicals	Room with videoprojector, acces to internet

6. Learning outcomes

Knowledge R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena and fundamental laws of electromagnetism and of light-matter interaction R2. The student/graduate understands, explains and interprets concepts, theories, models and principles of physics, highlighting practical applications of electromagnetism and light-matter interaction R3. The student/graduate establishes appropriate analysis methods for specific situations in the field of physics. R4. The student/graduate deduces working formulas for calculations with physical quantities, correctly using fundamental principles and laws of physics, with emphasis on electromagnetism and light-matter interaction R5. The student/graduate correctly describes physical systems, using specific theories and tools to characterize them. R8. The student/graduate identifies and specifies relevant scientific information and legislative regulations specific to the field of physics, with an emphasis on electromagnetism and light-matter interaction R10. The student/graduate identifies the appropriate mathematical models and algorithms for analyzing experimental data in electromagnetism and light-matter interaction Skills phenomena related to electromagnetism and light-matter interaction

- R1. The student/graduate uses the concepts and methods specific to the modeling of physical
- The student/graduate applies the principles and laws of physics in solving theoretical or practical problems in electromagnetism and light-matter interaction, including in partially unpredictable situations
- R3. The student/graduate correlates statistical analysis methods with experimental data, integrating the results and critically interpreting the information obtained.
- R4. The student/graduate critically evaluates a scientific communication or a specialized report with a low degree of difficulty, analyzing the arguments and conclusions presented.
- R5. The student/graduate collects and interprets data resulting from the application of appropriate scientific methods, integrating the results obtained into an analytical framework.
- The student/graduate compares theoretical results from the specialized literature with experimental ones, integrating the data into a professional report or project.
- R10. The student/graduate uses the appropriate models and algorithms to make predictions on phenomena specific for electromagnetism and light-matter interaction

Responsibility and autonomy

- The student/graduate presents scientific or popularization papers and seminars on the fundamentals of electromagnetism and light-matter interaction, adapting the content
- R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations
- R3. The student/graduate takes responsibility for the personal professional development, planning and evaluating their own progress.
- The student/graduate responsibly performs independent work tasks and contributes to interdisciplinary approaches
- R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations.
- R8. The student/graduate critically analyzes a specialized paper or a scientific communication with a medium degree of difficulty, assuming the conclusions and recommendations.
- R10. The student/graduate identifies and uses appropriate mathematical tools in agreement with ethical and deontological principles

7.1 Lecture [chapters]	Teaching techniques	Observations
Theoretical description of laser beams; particular solutions of the	Systematic exposition -	4 Hours
Maxwell equations: plane waves, Gaussian beams, helical beams.	lecture. Examples	
Classical motion of the charged particle in the presence of a laser	Systematic exposition -	2 Hours
field	lecture. Examples	

Classical description of radiation scattering: linear and non-linear	Systematic exposition -	2 Hours
Thomson scattering	lecture. Examples	
Quantum description of electrons in electromagnetic fields; the	Systematic exposition -	2 Hours
Volkov solutions	lecture. Examples	
Quantum description of radiation scattering: linear and non-linear	Systematic exposition -	2 Hours
Compton process	lecture. Examples	
Simple systems interacting with the quantized electromagnetic	Systematic exposition -	4 Hours
field: the two level system, one electron atom	lecture. Examples	
Quantum transitions in the perturbative and non-perturbative	Systematic exposition -	6 Hours
regime; analytical and numerical approaches	lecture. Examples	
Elements of plasma physics interacting with intense	Systematic exposition -	4 Hours
electromagnetic fields, analytical and numerical approaches	lecture. Examples	
Angular momentum of the electromagnetic field, transfer of	Systematic exposition -	2 Hours
angular momentum in elementary processes	lecture. Examples	

- J. D. Jackson, Classical electrodynamics, John Wiley and Sons, 1999
- C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012
- A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84, 1177 (2012)
- A. Gonoskov et al, Charged particle motion and radiation in strong electromagnetic fields, REv. Mod. Phys. 94, 045001, 2022
- D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997
- M. Fox, Quantum Optics (Oxford Master Series in Atomic, Optical and Laser Physics), 2006
- F. V. Hartemann, High-field electrodynamics, CRC press, 2002
- P. Michel, Introduction to Laser-Plasma Interactions, Springer International Publishing, 2023
- J. P. Torres (ed), Twisted photons: applications of light with orbital angular momentum, Wiley-VCH (2011)

7.2 Tutorials	Teaching techniques	Observations
Calculation of energy density, momentum, angular momentum of	Supervised practical activity,	4 Hours
the electromagnetic field, application for some particular cases	problem solving	
Analytical and numerical solution of the classical equation of	Supervised practical activity,	4 Hours
motion for charged particles in electromagnetic field	problem solving	
Properties of Volkov solutions, packets of Volkov states	Supervised practical activity,	4 Hours
	problem solving	
The rotating waves approximation, the Jaynes-Cummings model,	Supervised practical activity,	2 Hours
	problem solving	
Systems in mixed states interacting with the electromagnetic	Supervised practical activity,	4 Hours
field; the time evolution problem	problem solving	
Calculation of differential cross sections for some elementary	Supervised practical activity,	6 Hours
processes in atom-laser interaction	problem solving	
Numerical study of angular momentum transfer in atom-laser	Supervised practical activity,	2 Hours
interaction	problem solving	
		2 Hours

References:

- J. D. Jackson, Classical electrodynamics, John Wiley and Sons, 1999
- C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012
- A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84, 1177 (2012)
- A. Gonoskov et al, Charged particle motion and radiation in strong electromagnetic fields, REv. Mod. Phys. 94, 045001, 2022
- D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997
- M. Fox, Quantum Optics (Oxford Master Series in Atomic, Optical and Laser Physics), 2006
- F. V. Hartemann, High-field electrodynamics, CRC press, 2002
- P. Michel, Introduction to Laser-Plasma Interactions, Springer International Publishing, 2023
- J. P. Torres (ed), Twisted photons: applications of light with orbital angular momentum, Wiley-VCH (2011)

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight în	
	final r		final mark	
Lecture	- Clarity and coherence of exposition Written test + oral examination 70%			
	- Correct use of the methods/physical models			
	- The ability to give specific examples			
Tutorial	- Ability to use specific problem solving methods Homeworks 30%			
Minimal	Requirements for mark 5 (10 points scale):			
requirements	- At least 50% of exam score and of homework.			
for passing				
the exam	Requirements for mark 10 (10 points scale):			
	- At least 95% of exam score and of homework.			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

> name and signature, name and signature Conf. Madalina Boca Conf. Madalina Boca

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DI.208 Research activity (80 hours)

1. Study p	program
------------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Research activity (80 hours)
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3. Total estimated time		T			
3.1. Hours per week	8	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/8/0
3.4. Total hours per semester	80	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/80/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	s, manuals, lectur	e notes, b	ibliography	210
Research in library, study of electronic resources, field research				105	
Preparation for practicals/tutorials/projects/reports/homework				105	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study			420		
3.8. Total hours per semester			500		
3.9. ECTS				20	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal			
requirements			
for passing			
the exam			

Date,

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.209 Finalization of master thesis (40 hours)

1.	Study	program
----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Finalization of master thesis (40 hours)
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7.Classification

3. Total estimated time

3. Iotal Collilated tille					
3.1. Hours per week	4	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/4/0
3.4. Total hours per semester	40	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/40/0
Distribution of estimated time for study					
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	43
Research in library, study of electronic resources, field research					21
Preparation for practicals/tutorials/projects/reports/homework				21	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				85	
3.8. Total hours per semester				125	
3.9. ECTS					5

4. Prerequisites (if necessary)

	(
4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Date,

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.210 Susținerea publica a lucrării de disertație

1. Diddy program	1.	Study	program
------------------	----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

	2.1. Course unit title	Susţinerea publica a lucrării de disertaţie
2.2. Teacher		
	2.3. Tutorials/Practicals instructor(s)	
	2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation 0 2.7. Classification

3. Total estimated time

5. Ioui commute mile					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse note	s, manuals, lectur	re notes, bi	bliography	125
Research in library, study of electronic resources, field research					
Preparation for practicals/tutorials/projects/reports/homework					62
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				250	
3.8. Total hours per semester				250	
3.9. ECTS				10	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Date,

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.106.1 Spectroscopy of condensed states and of materials for energy conversion

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

20 Course unit			
2.1. Course unit title	Spectroscopy of condensed states and of materials for energy conversion		
2.2. Teacher	Conf. dr. Iulian Ionita		
2.3. Tutorials/Practicals instructor(s)	Conf. dr. Iulian Ionita		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	47
Research in library, study of electronic resources, field research					24
Preparation for practicals/tutorials/projects/reports/homework					23
Tutorat					0
Other activities				0	
3.7. Total hours of individual study			94		
3.8. Total hours per semester			150		
3.9. ECTS			6		

4. Prerequisites (if necessary)

	·	
4.1. curriculum	Wave Optics, Spectroscopy and Lasers, Fundamentals of Atomic Physics, Solid State Physics,	
	Quantum mechanics	
4.2. competences	Knowledge about: Linear algebra	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector	
5.2. for tutorials/practicals	Computers, Instruments for spectral analyses in visible, ultraviolet and infrared	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

Teaching techniques	Observations
Systematic exposition -	2 Hours
lecture. Examples	
Systematic exposition -	4 Hours
lecture. Examples	
	Systematic exposition - lecture. Examples Systematic exposition -

Symmetry of molecular vibrations and selection rules: Vibronic coupling, Vibronic polarization, Symmetry and normal modes of vibration, Selection rules for fundamental vibrational transitions	Systematic exposition - lecture. Examples	6 Hours
Basic optical spectroscopy techniques: Dispersion Spectrometry, FTIR Spectrometry, Raman Spectrometry	Systematic exposition - lecture. Examples	2 Hours
Spectroscopy in materials characterization for energy conversion	Systematic exposition - lecture. Examples	2 Hours
Characterization of non-crystalline materials by Raman spectrometry: vibrational modes, Stokes and anti-Stokes lines, standard vs. Resonance spectrometry, Raman microscopy.	Systematic exposition - lecture. Examples	4 Hours
Characterization of non-crystalline materials by FTIR spectrometry: vibrational modes, stationary mode vs. time dependence, applications in energy conversion.	Systematic exposition - lecture. Examples	4 Hours
Experimental methods of spectroscopy in the characterization of materials for energy conversion: determination of band gap and type of semiconductor.	Systematic exposition - lecture. Examples	4 Hours

- 1. I. Ionita, "Optical Spectroscopy and Group Theory: An Illustrated Introduction", Taylor and Francis, 2014.
- 2. F. Cotton, Chemical Applications of Group Theory 3rd edition(1990)
- 3. Richard L. McCreery, "Raman Spectroscopy for Chemical Analysis", John Wiley and Sons
- 4. Wei Liu, Ying Fu, "Spectroscopy of Semiconductors", Springer, 2018

7.3 Practicals	Teaching techniques	Observations
Presentation of the laboratory, activities and work	Directed practical activity	2 Hours
regulations in the laboratory (safety work rules)		
Modeling of molecular complexes using the Jmol	Directed practical activity	4 Hours
program.		
Calculation of states and transitions of transition	Directed practical activity	4 Hours
metals atoms with d		
n		
configuration in a cubic		
symmetry.		
Measurement of absorption and luminescence	Directed practical activity	4 Hours
spectra of ionic crystals doped with transition		
metals and rare earths.		
Presentation of Raman and FTIR spectrometry	Directed practical activity	2 Hours
components (radiation source, detector,		
measurement modes).		
Raman spectrometry of carbonaceous materials and	Directed practical activity	4 Hours
evaluation of the degree of graphitization.		
Determination of the chemical structure of	Directed practical activity	4 Hours
materials doped with heteroatoms.		
The solar spectrum, compatibility with the solar	Directed practical activity	4 Hours
spectrum.		

- 1. I. Ionita, "Optical Spectroscopy and Group Theory: An Illustrated Introduction", Taylor and Francis, 2014.
- 2. Richard L. McCreery, "Raman Spectroscopy for Chemical Analysis", John Wiley and Sons. Sternberg, Group theory and physics, Cambridge University Press, 1994
- 3. Wei Liu, Ying Fu, "Spectroscopy of Semiconductors", Springer, 2018

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Princeton University – Chemistry Dep, Universidad Autonoma de Madrid Department of Condensed Matter Physics, Denmark Technical University – Department of Energy Conversion and Storage, Trinity College Dublin – School of Chemistry). The content of the discipline is according to the requirements for employment in research institutes in physics and materials science and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of exposition	Written test	80%
	- Correct use of the methods/		
	physical models		
	- The ability to give specific examples		
Practical	- Knowledge and use of experimental	Laboratory colloquium	20%
	techniques;		
	- Interpretation of the results		
Minimal	Requirements for mark 5 (10 points scale)		
requirements	Getting the average 5.		
for passing	Completion of all laboratory works and grade 5 in the colloquium – for the laboratory		
the exam	The correct exposure of the indicated subjects to obtain a score of 5 in the final exam.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,

13.07.2025 Conf. dr. Iulian Ionita Conf. dr. Iulian Ionita

Date of approval Head of department

name and signature

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.106.2 Processing with laser beams

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Processing with laser beams
2.2. Teacher	Marian ZAMFIRESCU
2.3. Tutorials/Practicals instructor(s)	Raluca IVAN
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

C. Total estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes.	, manuals, lectur	e notes, bibl	iography	47
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework			23		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			94		
3.8. Total hours per semester			150		
3.9. ECTS			6		

4. Prerequisites (if necessary)

-	
4.1. curriculum	Optics, Spectroscopy and Lasers, Quantum mechanics, Basics of atomic physics
4.2. competences	Knowledge about: Solid State Physics, Statistical Physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall with multimedia equipment (computer, video projector, white board,
	internet connection)
5.2. for tutorials/practicals	Access to a research laser facility (CETAL) with lasers for industrial processing,
	specialized software for laser materials processing and CAD. Safety equipment.

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Basic knowledge about lasers. Generation of laser radiation. Rate	Systematic exposition -	2 Hours
Equations.	lecture. Examples	
Resonant optical cavity, resonator stability, Thermal lens,	Systematic exposition -	2 Hours
Gaussian beam, spectral and spatial modes, modes selection.	lecture. Examples	
Industrial lasers: CO2, Nd:YAG, excimer, laser diodes, ultrashort	Systematic exposition -	2 Hours
pulsed lasers	lecture. Examples	
Laser beam transport and laser focusing (optical transport	Systematic exposition -	2 Hours
systems, beam pointing)	lecture. Examples	

Fundamental phenomena in the interaction of the laser beam with	Systematic exposition - 3	2 Hours
matter	lecture. Examples	
Theory of laser ablation. The heat equation. The Saha-Boltzmann	Systematic exposition -	2 Hours
equation. Deposition of thin layers with pulsed laser beams.	lecture. Examples	
Laser processing systems and components. Laser cutting. Laser	Systematic exposition -	2 Hours
beam welding	lecture. Examples	
Laser surface treatment: hardening, resolidification, alloying,	Systematic exposition -	2 Hours
cladding, texturing.	lecture. Examples	
Additive manufacturing. Laser 3D printing of metallic parts	Systematic exposition -	2 Hours
	lecture. Examples	
3D Laser lithography. One-photon and two-photon	Systematic exposition -	2 Hours
photopolymerization	lecture. Examples	
Laser processing at nanoscale: Laser nanotexturing, Laser near-	Systematic exposition -	2 Hours
field ablation. Optical trapping	lecture. Examples	
Optical methods of diagnosis and processing control a. Optical	Systematic exposition -	2 Hours
microscopy; b. Contact and non-contact profilometry; c.	lecture. Examples	
Fluorescence microscopy; d. Two-photon microscopy (SHG); e.		
Optical coherence tomography (OCT); f. Thermography		
Optical methods of diagnosis and processing control a. Optical	Systematic exposition -	2 Hours
microscopy; b. Contact and non-contact profilometry; c.	lecture. Examples	
Fluorescence microscopy; d. Two-photon microscopy (SHG); e.		
Optical coherence tomography (OCT); f. Thermography		
Cleaning works of art with a laser beam. Processing of biotissues	1 1	2 Hours
with a laser beam.	lecture. Examples	

- 1. F. Trager (ed), Handbook: Lasers and Optics, Springer, 2007
- 2. I. Ionita, M. Zamfirescu, Teeth material ablation by femtosecond laser, Proc. SPIE vol. 7715-61, Biophotonics: Photonic Solutions for Better Health Care II, 77151S-11 (2010)
- 3. I. Ionita, M. Zamfirescu, "Femtosecond laser: the finest tool for hard tissue ablation", Proc. SPIE 8092, 80921D (2011); doi:10.1117/12.889285, in Medical Laser Applications and Laser-Tissue Interactions V, eds. Ronald Sroka, Lothar D. Lilge, 2011
- 4. Iulian Ionita, Compared NIR and UV Hard Tissue Drilling by Femtosecond Laser Beam, IEEE Proc. IQEC/CLEO Pacific Rim, Sydney, 2011
- 5. A. Stanculescu, A.-M. Albu, G. Socol, F. Stanculescu, M. Socol, N. Preda, O. Rasoga, M. Girtan, I. Ionita MAPLE deposited thin monomer films of maleimidic derivatives for photonics, J. Opt. Adv. Mat. 12, no. 3, p. 731-739, 2010
- 6. M. Zamfirescu, M. Ulmeanu, F. Jipa, I. Anghel, S. Simion, R. Dabu, I. Ionita, Laser processing and characterization with femtosecond laser pulses, Rom. Rep. Phys., vol.62, no.3, p. 594-609, 2010
- 7. C. Constantinescu, A. Matei, I. Ionita, V. Ion, M. Dinescu, I.C. Vasiliu, A. Emandi, Ferrocene thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications, EMRS 2013
- 8. D. Dumitras, "Biofotonica", All, 1999
- 9. W. Koechner, "Solid-State Laser Engineering", Springer Series in Optical Sciences, ed. 2006.
- 10. Anthony E. Siegman, "Lasers" University Science Books, 1986.

7.3 Practicals	Teaching techniques	Observations
Laser safety measures and protocols. Optical sensors. Laser	Assisted practical activity	4 Hours
beam characterizations.		
Numerical modelling of laser beam propagation in free space and	Assisted practical activity	4 Hours
optical media.		
Experimental study of laser ablation. Laser ablation threshold.	Assisted practical activity	4 Hours
Laser processing systems for laser cutting and laser beam	Assisted practical activity	4 Hours
welding.		
Comparative study of photopolymerization with UV laser vs.	Assisted practical activity	4 Hours
femtosecond lasers.		
Comparative study of laser patterning with ns pulses vs ultrashort	Assisted practical activity	4 Hours
pulses		

- 1. F. Trager (ed), Handbook: Lasers and Optics, Springer, 2007
- 2. I. Ionita, M. Zamfirescu, Teeth material ablation by femtosecond laser, Proc. SPIE vol. 7715-61, Biophotonics: Photonic Solutions for Better Health Care II, 77151S-11 (2010)
- 3. I. Ionita, M. Zamfirescu, "Femtosecond laser: the finest tool for hard tissue ablation", Proc. SPIE 8092, 80921D (2011); doi:10.1117/12.889285, in Medical Laser Applications and Laser-Tissue Interactions V, eds. Ronald Sroka, Lothar D. Lilge, 2011
- 4. Iulian Ionita, Compared NIR and UV Hard Tissue Drilling by Femtosecond Laser Beam, IEEE Proc. IQEC/CLEO Pacific Rim, Sydney, 2011
- 5. A. Stanculescu, A.-M. Albu, G. Socol, F. Stanculescu, M. Socol, N. Preda, O. Rasoga, M. Girtan, I. Ionita MAPLE deposited thin monomer films of maleimidic derivatives for photonics, J. Opt. Adv. Mat. 12, no. 3, p. 731-739, 2010
- 6. M. Zamfirescu, M. Ulmeanu, F. Jipa, I. Anghel, S. Simion, R. Dabu, I. Ionita, Laser processing and characterization with femtosecond laser pulses, Rom. Rep. Phys., vol.62, no.3, p. 594-609, 2010
- 7. C. Constantinescu, A. Matei, I. Ionita, V. Ion, M. Dinescu, I.C. Vasiliu, A. Emandi, Ferrocene thin films grown by matrix-assisted pulsed laser evaporation for non linear optical applications, EMRS 2013

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the particular importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is according to the employment requirements in research institutes in optics, lasers and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of exposition Written test 80%		80%
	- Correct use of the methods/		
	physical models		
	- The ability to give specific examples		
Practical	- Knowledge and use of experimental techniques	Hands-on laboratory assessment	20%
	- Processing of experimental data and		
	interpretation of the results		
Minimal	Requirements for mark 5 (10 points scale):		
requirements	- Completion of all laboratory work and score 5 on the laboratory test.		
for passing	- The correct presentation of the indicated subjects to obtain a score of 5 in the final exam.		
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
Marian ZAMFIRESCU Raluca IVAN

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

13.07.2025

Academic year 2025/2026 DO.109.1 Quantum optics

1. Study program

v i 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Quantum optics
2.2. Teacher	Prof. dr. Iulia Ghiu
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Andreea Croitoru
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3. Iotai estimatea time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bib	liography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			144		
3.8. Total hours per semester			200		
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Algebra, Quantum mechanics
4.2. competences	Equations of Mathematical Physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Video projector

6. Learning outcomes

Knowledge	R3. The student/graduate establishes appropriate analysis methods for specific situations in the field of physics. R5. The student/graduate correctly describes physical systems, using specific theories and tools to characterize them. R7. The student/graduate explains the operating principle of a measuring device or a physical method, highlighting the algorithm used.
Skills	R3. The student/graduate correlates statistical analysis methods with experimental data, integrating the results and critically interpreting the information obtained. R5. The student/graduate collects and interprets data resulting from the application of appropriate scientific methods, integrating the results obtained into an analytical framework. R7. The student/graduate prepares scientific reports and presentations, building logical and coherent arguments on general physics topics.

Responsibility	R3. The student/graduate takes responsibility for the personal professional development, planning
and autonomy	and evaluating their own progress.
	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines
	and safety regulations.
	R7. The student/graduate carries out research internships in specialized units, writing reports on
	the activity and results obtained.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Quantization of the electromagnetic field	Systematic exposition.	2 Hours
Entanglement. Condition that the two-photon state to be inseparable	Systematic exposition.	4 Hours
The quantum description of the beam splitter. Applications	Systematic exposition.	4 Hours
Bell's inequalities	Systematic exposition.	4 Hours
Quantum random number generator	Systematic exposition.	2 Hours
Quantum key distribution	Systematic exposition.	4 Hours
Michelson interferometer	Systematic exposition.	2 Hours
Interference phenomena with single and double photodetection.	Systematic exposition.	2 Hours
The experiment of Hong, Ou, Mandel.		
The theory of quantum eraser	Systematic exposition.	2 Hours
The proposal of Hanbury Brown-Twiss experiment	Systematic exposition.	2 Hours

References:

- 1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.
- 3. Cohen-Tannoudji, Dupont-Roc, and Grynberg, Atom-Photon Interactions, Wiley, 1998.
- 4. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 5. C. W. Gardiner, Quantum Noise, Springer Verlag, 1991.
- 6. M. D. Al-Amri, M. M. El-Gomati, M. S. Zubairy (Editors), Optics in Our Time, Springer Open, 2016.
- 7. quED Entanglement Demonstrator A Science Kit for Quantum Physics, www.qutools.com, 2025.

7.3 Practicals	Teaching techniques	Observations
Generation of entanglement. Entanglement visibility		4 Hours
The experimental proof of CHSH Bell inequality		4 Hours
Quantum Random Number Generator		4 Hours
Correlation curves		2 Hours
Quantum key distribution based on the BB 84 protocol		4 Hours
Michelson interferometer		4 Hours
Quantum eraser		2 Hours
Hong-Ou-Mandel interferometer		2 Hours
Hanbury Brown-Twiss experiment		2 Hours

References:

- 1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.
- 3. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 4. quED Entanglement Demonstrator A Science Kit for Quantum Physics, www.qutools.com, 2025.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Europe (Oxford University, Royal Institute of Technology - Stockholm). The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of equations/mathematical methods/physical models and theories The ability to give specific examples 	Written examination	80%
Practical	- Ability to give the interpretation for the experimental results	Evaluation through practical activity	20%
Minimal requirements for passing the exam	Attending minimum 50 % of the lectures and 100% Mark 5 Minimum 50 % of the requirements for the final ma		

Date, Practicals/Tutorials/Project instructor(s), Teacher's

> name and signature, name and signature

13.07.2025 Prof. dr. Iulia Ghiu Lect. dr. Andreea Croitoru

Date of approval Head of department

> name and signature Lect. dr. Rozana ZUS

15.07.2025

Academic year 2025/2026

DO.109.2 Applications of modeling and simulations in photonics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Applications of modeling and simulations in photonics		
2.2. Teacher			
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research				36	
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

		`	
4.	1. curriculum		
4.2	2. competences		

5. Conditions/Infrastructure (if necessary)

	• • • • • • • • • • • • • • • • • • • •
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena
	and fundamental laws of electromagnetism and of light-matter interaction
	R2. The student/graduate understands, explains and interprets concepts, theories, models and
	principles of physics, highlighting practical applications of electromagnetism and light-matter
	interaction
	R8. The student/graduate identifies and specifies relevant scientific information and legislative
	regulations specific to the field of physics, with an emphasis on electromagnetism and light-matter
	interaction
	R9. The student/graduate identifies methods, techniques, and laboratory instruments necessary for
	designing and conducting physical experiments.
	R10. The student/graduate identifies the appropriate mathematical models and algorithms for
	analyzing experimental data in electromagnetism and light-matter interaction

Skills	R1. The student/graduate uses the concepts and methods specific to the modeling of physical
	phenomena related to electromagnetism and light-matter interaction
	R2. The student/graduate applies the principles and laws of physics in solving theoretical
	or practical problems in electromagnetism and light-matter interaction, including in partially
	unpredictable situations
	R8. The student/graduate compares theoretical results from the specialized literature with
	experimental ones, integrating the data into a professional report or project.
	R9. The student/graduate correctly interprets the data and deduces working formulas for
	calculations with physical quantities, appropriately applying specific fundamental principles and
	laws.
	R10. The student/graduate uses the appropriate models and algorithms to make predictions on
	phenomena specific for electromagnetism and light-matter interaction
Responsibility	R1. The student/graduate presents scientific or popularization papers and seminars on the
Responsibility and autonomy	R1. The student/graduate presents scientific or popularization papers and seminars on the fundamentals of electromagnetism and light-matter interaction, adapting the content
	fundamentals of electromagnetism and light-matter interaction, adapting the content
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations R8. The student/graduate critically analyzes a specialized paper or a scientific communication with
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations R8. The student/graduate critically analyzes a specialized paper or a scientific communication with a medium degree of difficulty, assuming the conclusions and recommendations.
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations R8. The student/graduate critically analyzes a specialized paper or a scientific communication with a medium degree of difficulty, assuming the conclusions and recommendations. R9. The student/graduate demonstrates autonomy in operating and maintaining laboratory
	fundamentals of electromagnetism and light-matter interaction, adapting the content R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations R8. The student/graduate critically analyzes a specialized paper or a scientific communication with a medium degree of difficulty, assuming the conclusions and recommendations. R9. The student/graduate demonstrates autonomy in operating and maintaining laboratory equipment, respecting safety and quality standards.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
MODELING AND SIMULATION OF PHYSICAL SYSTEMS.	Systematic exposition -	4 Hours
THE THEORY OF MODELING AND SIMULATION,	lecture. Examples	
COMPLEXITY THEORY		
Modelling formalisms and their simulators: DT; DEQ; DEV;	Systematic exposition -	4 Hours
Checking, Validating, Morphisms Approximately.	lecture. Examples	
DIFFERENTIAL EQUATIONS, FINITE DIFFERENCES -	Systematic exposition -	4 Hours
Modeling with ODE Cellular vending machines. PHASE	lecture. Examples	
CONFIGURATION SPACE		
LINEAR OPTICAL SYSTEMS. FOURIER OPTICS. OSPL	Systematic exposition -	4 Hours
Applications	lecture. Examples	
PROPAGATION OF OPTICAL FIELDS. MAXWELL	Systematic exposition -	4 Hours
EQUATIONS Solving Maxwell equations by finite method	lecture. Examples	
Difference Time Domain		
THE FLUID MODEL AND THE plasma kinetic model. Vlasov	Systematic exposition -	4 Hours
equations and Fokker–Planck equations	lecture. Examples	
DYNAMICS OF LASER SYSTEMS Semiclassical theory.	Systematic exposition -	4 Hours
Chaotic dynamics solutions. Laser diode with extended cavity.	lecture. Examples	

References:

Bibliography: •M. Bulinski, "Modelare si simulare – Aplicatii in OSPL", Ed Universitatii Bucuresti 2011 •"Introduction to Fourier Optics", Joseph W. Goodman (Roberts and Company Publishers, 2004) •"Theory of Modeling and Simulation", Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, Academic Press (2019); •Olaf Stenzel, Light–Matter Interaction (A Crash Course for Students of Optics, Photonics and Materials Science), Springer Nature Switzerland 2022; •Prem B. Bisht, Introduction to Photonics and Laser Physics with Applications, IOP Series in Advances in Optics, Photonics and Optoelectronics 2022

7.3 Practicals	Teaching techniques	Observations
AUTOMATE CELULARE. Grile de curgere (cuplate), ECUAŢII	Directed practical activity	4 Hours
CU DIFERENȚE FINITE		

ECUAȚII DIFERENȚIALE FUNDAMENTALE Semnificația geometrică a soluțiilor ecuațiilor diferențiale. Modelarea cu ODE	Directed practical activity	4 Hours
SPAŢII VECTORIALE. ECUAŢIA SCHRODINGER. Apicatii OSPL	Directed practical activity	4 Hours
METODE SPECTRALE Metoda sintezei Fourier. Spectrul energetic	Directed practical activity	4 Hours
ROPAGAREA CÂMPURILOR OPTICE – spectrul unghiular. Difracția si interferenta. Holografia digitala	Directed practical activity	4 Hours
MEDII NELINIARE Metoda de propagare "Split-Step" Solitoni optici.Rezolvarea ecuațiilor Maxwell prin METODA FDTD	Directed practical activity	4 Hours
DINAMICA SISTEMELOR LASER Dioda laser cu cavitate extinsă.	Directed practical activity	4 Hours

Bibliography: •M. Bulinski, "Modelare si simulare – Aplicatii in OSPL", Ed Universitatii Bucuresti 2011;

- •"Nonlinear Time Series Analysis", Holger Kantz, Thomas Schreiber, Cambridge University Press (2004);
- •"Engineering Optics with MATLAB", Ting-Chung Poon, Taegeun Kim, (World Scientific Publishing Company 2006); •Electromagnetic and Photonic Simulation for the Beginner, Artech House Publishers 2022

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The choice of teaching/learning methods and the drawing of the guidelines of the content were corroborated with the content of similar disciplines taught at universities in the country and abroad (Massachusetts Institute of Technology; Georgia Tech; University of Waterloo). The content of the discipline is according to the requirements of employment in research institutes in optics, plasma and lasers and in education (under the law).

9. Assessment

9. Assessin		T .	
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	Clarity, coherence and brevity of exposure;	Written test/oral examination	50%
	•Proper use of models, formulas, computational		
	relationships and routines; •Exemplification		
	capacity		
Practical	Apply specific resolution methods to the given	Homeworks	50%
	problem		
Minimal			
requirements			
for passing			
the exam			

Date, Teacher's name and signature,

Practicals/Tutorials/Project instructor(s),

d signature, name and signature

13.07.2025

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.110.1 High-power ultrashort-pulse lasers

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	High-power ultrashort-pulse lasers
2.2. Teacher	Marian ZAMFIRESCU
2.3. Tutorials/Practicals instructor(s)	Raluca IVAN
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

S. Total estimated time					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes,	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of el	lectronic res	ources, field rese	earch		33
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat					0
Other activities					0
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS					7

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Spectroscopy and Lasers.
4.2. competences	Knowledge about: Quantum mechanics, Electronics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Lecture hall with multimedia equipment (computer, video projector, white board,
	internet connection)
5.2. for tutorials/practicals	Access to a research laser facility (CETAL) with optical systems and ultrafast lasers,
	specialized software for numerical modeling. Safety equipment.

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Elements of wave optics in lasers physics and engineering.	Systematic exposition -	2 Hours
	lecture. Examples	
Optical materials and their properties. Nonlinear interaction of	Systematic exposition -	2 Hours
ultrashort laser pulses with optical materials.	lecture. Examples	
Generation of ultrashort pulses. Mode locking technique.	Systematic exposition -	2 Hours
Temporal and spectral properties of ultrashort laser pulses.	lecture. Examples	
Laser amplification of ultrashort laser pulses. Regenerative and	Systematic exposition -	2 Hours
multipass amplifiers.	lecture. Examples	

Stretcher and compressors in CPA systems. OPCPA systems.	Systematic exposition - lecture. Examples	2 Hours
Temporal characterization by the autocorrelation method (FROG and SPIDER techniques). Measurement and control of ultrashort laser pulses. The contrast factor.	Systematic exposition - lecture. Examples	2 Hours
Optical systems for transporting high power laser beams. Alignment of ultraintense laser systems.	Systematic exposition - lecture. Examples	2 Hours
Spatial distribution formation techniques. Wavefront control.	Systematic exposition - lecture. Examples	2 Hours
Secondary sources: Generation of THz beams.	Systematic exposition - lecture. Examples	2 Hours
Higher harmonics, X-rays and applications.	Systematic exposition - lecture. Examples	2 Hours
Particle acceleration with PW-class laser beams and applications.	Systematic exposition - lecture. Examples	2 Hours
Laser targets - toward high repetition rate ultra-intense lasers.	Systematic exposition - lecture. Examples	2 Hours
The formation of pre-plasmas in the operation of petawatt beams. Plasma mirrors. High power fiber optic lasers.	Systematic exposition - lecture. Examples	2 Hours
Safety rules for non-ionizing and ionizing radiation in laboratories with PW-Class lasers.	Systematic exposition - lecture. Examples	2 Hours

- 1. F. Trager (ed), Handbook of Lasers and Optics, Springer 2007
- 2. R. Dabu, Lumina extrema. Lasere de mare putere, ED. Academiei Romane 2015
- 3. I. Ionita, Optica ondulatorie, online cours, FFB website
- 4. Extreme Light Infrastructure Nuclear Physics (ELI-NP) White Book https://www.eli-np.ro/whitebook.php as Accessed in February 2023.
- 5. I. Ionita, Optical Spectroscopy and Group Theory: An Illustrated Introduction, Taylor and Francis, 2014.

7.3 Practicals	Teaching techniques	Observations
Presentation of laboratories with ultra-intense lasers. Safety rules.		2 Hours
Lasers with ultrashort pulses: construction, characteristics, operation.		2 Hours
Alignment of an optical system with a femtosecond laser with near-infrared emission.		2 Hours
Measurement and control of the spatial, spectral and temporal properties of laser beams with ultrashort pulses. Second order autocorrelators.		2 Hours
Temporal and spatial control of the laser beams. Adaptive optics		2 Hours
Generation and characterization of harmonics emitted by a target irradiated with a laser beam of ultrashort pulses.		2 Hours
Design of an experiment at CETAL laser facility from INFLPR: laser control, target manipulation, diagnosis set-up and data management.		2 Hours

References:

- 1. Extreme Light Infrastructure Nuclear Physics (ELI-NP) White Book https://www.eli-np.ro/whitebook.php as Accessed in February 2023.
- 2. R. Dabu, Lumina extrema. Lasere de mare putere, ED. Academiei Romane 2015
- 3. I. Ionita, Optical Spectroscopy and Group Theory: An Illustrated Introduction, Taylor and Francis, 2014
- 4. Ath. Trutia, F.Iova, I.Ionita, Caiet de aplicatii la Spectroscopia starilor condensate, Editura Universitatii Bucuresti (1997)
- 8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the particular importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad. The content of the discipline is according to the employment requirements in research institutes in optics, lasers and in education (under the law).

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models. The ability to give specific examples. 	Written test	80%
Practical	 Knowledge and use of experimental techniques. Processing of experimental data and interpretation of the results. 	Hands-on laboratory assessment.	20%
Minimal requirements for passing the exam			

Practicals/Tutorials/Project instructor(s), Date, Teacher's

name and signature, name and signature Marian ZAMFIRESCU Raluca IVAN

Date of approval Head of department

> name and signature Lect. dr. Rozana ZUS

15.07.2025

Academic year 2025/2026

DO.110.2 Modern computational methods in spectroscopy and imaging

1.	Study	program
----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Modern computational methods in spectroscopy and imaging		
2.2. Teacher			
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study		I	,	
Learning by using one's own o	ourse notes	s, manuals, lectur	e notes, b	ibliography	67
Research in library, study of electronic resources, field research				33	
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat				0	
Other activities					0
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal			
requirements			
for passing			
the exam			

Date,

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.111.1 Digital processing of images and optical fields

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Digital processing of images and optical fields	
2.2. Teacher		
2.3. Tutorials/Practicals instructor(s)		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification	

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography					60
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

	· (
4.1. curriculum	Optics
4.2. competences	Use of software packages for data analysis and processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer room with multimedia equipment (video projector, etc.)				
5.2. for tutorials/practicals Experimental setups in the Digital Image Processing Laboratory; Computers,					
Matlab/SciLab modeling software, Python, video projector					

6. Learning outcomes

Knowledge	R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena
	and fundamental laws of electromagnetism and of light-matter interaction
	R3. The student/graduate establishes appropriate analysis methods for specific situations in the
	field of physics.
	R4. The student/graduate deduces working formulas for calculations with physical quantities,
	correctly using fundamental principles and laws of physics, with emphasis on electromagnetism
	and light-matter interaction
	R6. The student/graduate identifies optimal analysis alternatives for obtaining relevant information,
	making the connection with the fundamental principles of physics.
	R10. The student/graduate identifies the appropriate mathematical models and algorithms for
	analyzing experimental data in electromagnetism and light-matter interaction

Skills	R1. The student/graduate uses the concepts and methods specific to the modeling of physical
	phenomena related to electromagnetism and light-matter interaction
	R3. The student/graduate correlates statistical analysis methods with experimental data, integrating
	the results and critically interpreting the information obtained.
	R4. The student/graduate critically evaluates a scientific communication or a specialized report
	with a low degree of difficulty, analyzing the arguments and conclusions presented.
	R6. The student/graduate writes and presents a scientific or professional report, respecting ethical
	requirements and quality standards.
	R10. The student/graduate uses the appropriate models and algorithms to make predictions on
	phenomena specific for electromagnetism and light-matter interaction
Responsibility	R1. The student/graduate presents scientific or popularization papers and seminars on the
Responsibility and autonomy	R1. The student/graduate presents scientific or popularization papers and seminars on the fundamentals of electromagnetism and light-matter interaction, adapting the content
1	
1	fundamentals of electromagnetism and light-matter interaction, adapting the content
1	fundamentals of electromagnetism and light-matter interaction, adapting the content R3. The student/graduate takes responsibility for the personal professional development, planning
1	fundamentals of electromagnetism and light-matter interaction, adapting the content R3. The student/graduate takes responsibility for the personal professional development, planning and evaluating their own progress.
1	fundamentals of electromagnetism and light-matter interaction, adapting the content R3. The student/graduate takes responsibility for the personal professional development, planning and evaluating their own progress. R4. The student/graduate responsibly performs independent work tasks and contributes to
1	fundamentals of electromagnetism and light-matter interaction, adapting the content R3. The student/graduate takes responsibility for the personal professional development, planning and evaluating their own progress. R4. The student/graduate responsibly performs independent work tasks and contributes to interdisciplinary approaches
1	fundamentals of electromagnetism and light-matter interaction, adapting the content R3. The student/graduate takes responsibility for the personal professional development, planning and evaluating their own progress. R4. The student/graduate responsibly performs independent work tasks and contributes to interdisciplinary approaches R6. The student/graduate uses information sources autonomously

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
INTRODUCTION Acquisition, processing, storage and digital	Systematic exposition -	4 Hours
transmission of optical field information.	lecture. Examples	
DIGITAL ACQUISITION OF OPTICAL FIELD	Systematic exposition -	4 Hours
INFORMATION. IMAGE COMPRESSION	lecture. Examples	
DIGITAL ANALYSIS OF THE COMPLEX AMPLITUDE	Systematic exposition -	4 Hours
OF OPTICAL FIELDS. RECONSTRUCTION OF PHASE	lecture. Examples	
DISTRIBUTION.		
REPRESENTATION OF discrete geometry images. Operations,	Systematic exposition -	4 Hours
transformations and multiscale presentations	lecture. Examples	
RANDOM FIELDS. PUNCTUAL/LOCAL OPERATIONS and	Systematic exposition -	4 Hours
PIXEL OPERATIONS	lecture. Examples	
GEOMETRIC TRANSFORMATIONS. OPERATIONS ON	Systematic exposition -	4 Hours
NEIGHBORHOODS. FILTRATION – linear and nonlinear	lecture. Examples	
filtration		
GEOMETRIC TRANSFORMATIONS. OPERATIONS ON	Systematic exposition -	4 Hours
NEIGHBORHOODS. FILTRATION – linear and nonlinear	lecture. Examples	
filtration		

References:

Geometrical Optics, Mircea Bulinski, Editura Universitatii Bucuresti (2014) Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing, Analysis and Machine Vision, Brooks-Cole Publishing Comp. 1999; Bernard Jahne, Digital image Processing, Springer 2001; P Verma, P Verma, A Dumka, A Ashok, Advanced Digital Image Processing and Its Applications in Big Data, CRC Press 2020; R C. Gonzalez, R E. Woods, S L. Eddins, Digital Image Processing Using MATLAB, Gatesmark Publishing 2020

7.3 Practicals	Teaching techniques	Observations
	Directed practical activity	4 Hours
DIGITAL IMAGE ACQUISITION. Digital image processing:	Directed practical activity	4 Hours
Matlab/Scilab Image Processing Toolbox, specific functions and		
methods.		
NOISE AND IMAGE RESTORATION. Filtering through time	Directed practical activity	4 Hours
mediation. Filters for getting out of the noise.		

IMAGE PROCESSING. Convolution and deconvolution filters.	Directed practical activity	4 Hours
Image enhancement		
THE APPLICATIONS OF THE FOURIER TRANSFORM	Directed practical activity	4 Hours
WHEN RECOGNIZING THE SHAPES. OCR by manipulating		
the spectrum of space frequencies.		
MEASURING THE CHARACTERISTICS of IMAGES.	Directed practical activity	4 Hours
Granulometry, identification of the shape of objects,		
measurement of regions		
3D VISUALIZATION – VIRTUAL REALITY. Voxels, surfaces	Directed practical activity	4 Hours
and meshes. Illumination and visualization of volumes.		

Digital Signal and Image Processing Using MATLAB, Gérard Blanchet Maurice Charbit, ISTE Ltd, 2006 •Learning Modern 3D Graphics Programming, Jason L. McKesson, 2012 •Rohit M. Thanki, Ashish M. Kothari, Digital Image Processing using SCILAB, Springer International Publishing 2019; •P. K. Thiruvikraman, Course on Digital Image Processing with MATLAB, IOP Publishing 2020

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity, coherence and brevity of exposure; •Proper use of models, formulas, computational relationships and routines; •The ability to exemplify	Written test/oral examination	30%
Practical	Apply specific resolution methods to the given problem	Homeworks / continuous assessment	70%
Minimal requirements for passing the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.111.2 Photonics and optically anisotropic media

1.	Study	program
----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Photonics and optically anisotropic media
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study		l	-	
Learning by using one's own o	ourse notes	s, manuals, lectur	e notes, bi	bliography	60
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework					29
Tutorat					0
Other activities					0
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Date,

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.203.1 Plasma spectroscopy

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Plasma spectroscopy		
2.2. Teacher	Lector dr. Bazavan Marian Cornel		
2.3. Tutorials/Practicals instructor(s)	Lector dr. Bazavan Marian Cornel		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes,	manuals, lectur	e notes, bibl	iography	72
Research in library, study of electronic resources, field research					36
Preparation for practicals/tutorials/projects/reports/homework					36
Tutorat					0
Other activities					0
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curriculum	Optică, Spectroscopie si laseri, Fizica atomului si moleculei, Fizica plasmei si aplicatii
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

o. Learning of	utcomes
Knowledge	R4. The student/graduate deduces working formulas for calculations with physical quantities,
	correctly using fundamental principles and laws of physics, with emphasis on electromagnetism
	and light-matter interaction
	R5. The student/graduate correctly describes physical systems, using specific theories and tools to
	characterize them.
	R6. The student/graduate identifies optimal analysis alternatives for obtaining relevant information,
	making the connection with the fundamental principles of physics.
	R7. The student/graduate explains the operating principle of a measuring device or a physical method, highlighting the algorithm used.
	R8. The student/graduate identifies and specifies relevant scientific information and legislative
	regulations specific to the field of physics, with an emphasis on electromagnetism and light-matter
	interaction

Skills	R4. The student/graduate critically evaluates a scientific communication or a specialized report			
	with a low degree of difficulty, analyzing the arguments and conclusions presented.			
	R5. The student/graduate collects and interprets data resulting from the application of appropriate			
	scientific methods, integrating the results obtained into an analytical framework.			
	R6. The student/graduate writes and presents a scientific or professional report, respecting ethical			
	requirements and quality standards.			
	R7. The student/graduate prepares scientific reports and presentations, building logical and			
	coherent arguments on general physics topics.			
	R8. The student/graduate compares theoretical results from the specialized literature with			
	experimental ones, integrating the data into a professional report or project.			
Responsibility	R4. The student/graduate responsibly performs independent work tasks and contributes to			
and autonomy	interdisciplinary approaches			
and autonomy	interdisciplinary approaches R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines			
and autonomy				
and autonomy	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines			
and autonomy	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations.			
and autonomy	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously			
and autonomy	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously R7. The student/graduate carries out research internships in specialized units, writing reports on			
and autonomy	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously R7. The student/graduate carries out research internships in specialized units, writing reports on the activity and results obtained.			

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductory notions. Elementary processes in plasma:	Systematic exposition -	4 Hours
elementary processes of the case I; elementary processes of	lecture. Examples	
the second case; laws and rules of preservation in elementary		
processes; rates of elementary processes.		
Radiative model of plasma: complete thermodinamic equilibrium	Systematic exposition -	6 Hours
(ET) model; local thermodinamic equilibrium (ETL) model;	lecture. Examples	
corona (MC) model; time-dependent corona model; collision-		
radiative model (MCR).		
Interaction of electromagnetic radiation with plasma. The	Systematic exposition -	2 Hours
radiative transfer equation. The optical thickness of a plasma.	lecture. Examples	
Profile and widening of spectral lines. Natural profile of spectral	Systematic exposition -	6 Hours
lines. Doppler widening of spectral lines in plasma. Widening of	lecture. Examples	
spectral lines due to pressure. Stark widening of spectral lines in		
plasma.		
Spectral diagnosis of plasmas. Determination of electronic	Systematic exposition -	6 Hours
temperature, rotation and vibration. Determination of particle	lecture. Examples	
concentrations. Simulation of plasma spectra in atomic and		
molecular gases.		
Sources of plasma radiation. Applications.	Systematic exposition -	4 Hours
	lecture. Examples	

References:

: I.Iova , I.I.Popescu, E.I. Toader, "Bazele spectroscopiei plasmei", Editura Stiintifica si Enciclopedica, Bucuresti, 1987; H. R. Griem. "Principles of Plasma Spectroscopy", Cambridge University Press, 1997; H. R. Griem, "Plasma Spectroscopy", McGraw-Hill, New York, 1964; V.N. Ochkin, "Spectroscopy of Low Temperature Plasma", Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim 2009; R. Huddlestone, S.L. Leonard, "Plasma diagnostic techniques", Academic Press, New York, 1965; W. Lochte-Holtgreven, "Plasma diagnostics", Amsterdam, North-Holland, 1968.

7.3 Practicals	Teaching techniques	Observations
Calibration of a spectral chain. Correction of heterochromaticity.	Directed practical activity	4 Hours
Determination of electronic temperature in an ETL-type plasma	Directed practical activity	4 Hours
Determination of electronic temperature in a non-ETL plasma.	Directed practical activity	4 Hours
Collisional radiative modelfor an argon plasma.	Directed practical activity	4 Hours

Simulation of the spectrum of a plasma in diatomic molecular	Directed practical activity	4 Hours
gases. Applications to N2 (FPS- first positive system, SPS-second		
positive system), N2+ (FNS- the first negative system), OH, CN,		
C2.		
Determination of the rotating temperature in a plasma in molecular	Directed practical activity	4 Hours
gases		
Determination of the vibration temperature in a molecular	Directed practical activity	4 Hours
nitrogen plasma.		

I.Iova, F.Iova, M.Bulinski, M.Bazavan, C.Biloiu, I.Gruia, I.Winkler, "Spectroscopie si Laseri. Aplicatii", Editura Universitatii Bucuresti, 2001; V.N. Ochkin, "Spectroscopy of Low Temperature Plasma", Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim 2009; R. Huddlestone, S.L. Leonard, "Plasma diagnostic techniques", Academic Press, New York, 1965; W. Lochte-Holtgreven, "Plasma diagnostics", Amsterdam, North-Holland, 1968.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching/learning methods, given the special importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar subjects taught at universities in the country and abroad. The content of the discipline is in accordance with the requirements of employment in research institutes in optics, plasma and laser physics and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test	50%
Practical	- Knowledge and use of experimental techniques; - Interpretation of the results;	Laboratory colloquium	50%
Minimal requirements for passing the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lector dr. Bazavan Marian Cornel Lector dr. Bazavan Marian Cornel

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.203.2 Advanced plasma physics

1. Study program

~	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2. Course ame	
2.1. Course unit title	Advanced plasma physics
2.2. Teacher	Lector dr. Bazavan Marian Cornel
2.3. Tutorials/Practicals instructor(s)	Lector dr. Bazavan Marian Cornel
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own o	course note	es, manuals, lectur	e notes, bil	oliography	72
Research in library, study of electronic resources, field research					36
Preparation for practicals/tutorials/projects/reports/homework				36	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Spectroscopy and Lasers, Atom and Molecule Physics, Statistical Physics, Plasma Physics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Experimental set-ups in the laboratory

6. Learning outcomes

Knowledge	R4. The student/graduate deduces working formulas for calculations with physical quantities, correctly using fundamental principles and laws of physics, with emphasis on electromagnetism and light-matter interaction R5. The student/graduate correctly describes physical systems, using specific theories and tools to characterize them. R7. The student/graduate explains the operating principle of a measuring device or a physical method, highlighting the algorithm used. R9. The student/graduate identifies methods, techniques, and laboratory instruments necessary for designing and conducting physical experiments.
	designing and conducting physical experiments.

Skills	R4. The student/graduate critically evaluates a scientific communication or a specialized report with a low degree of difficulty, analyzing the arguments and conclusions presented. R5. The student/graduate collects and interprets data resulting from the application of appropriate scientific methods, integrating the results obtained into an analytical framework. R7. The student/graduate prepares scientific reports and presentations, building logical and coherent arguments on general physics topics. R9. The student/graduate correctly interprets the data and deduces working formulas for calculations with physical quantities, appropriately applying specific fundamental principles and laws.
Responsibility	R4. The student/graduate responsibly performs independent work tasks and contributes to
and autonomy	interdisciplinary approaches
	R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations.
	R7. The student/graduate carries out research internships in specialized units, writing reports on the activity and results obtained.
	R9. The student/graduate demonstrates autonomy in operating and maintaining laboratory equipment, respecting safety and quality standards.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introduction – short reminder to the main characteristics of	Systematic exposition -	2 Hours
plasma.	lecture. Examples	
Models of plasmas. The MHD model. The uniparticule model.	Systematic exposition -	6 Hours
The kinetic model. Vlasov equation. The moments of the	lecture. Examples	
Boltzmann equation. The PIC algorithm (particle in the cell) of		
simulation in plasma.		
The formation of the spatial load layer. Bohm criterion. The	Systematic exposition -	6 Hours
Child-Langmuir equation. OML theory, ABR. Plasma diagnosis	lecture. Examples	
by probe method- Druyvesteyn method, Malter Johnson.si		
method.		
Waves in magnetized and unmagnetized plasmas.	Systematic exposition -	4 Hours
Electromagnetic waves. Ion-acoustic waves. The general	lecture. Examples	
dispersion relationship. Brillouin diagram.		
Optical methods of plasma diagnosis (microwave interferometry	Systematic exposition -	2 Hours
and lasers)	lecture. Examples	
Types of plasma: ECR discharge (Electron cyclotron resonance).	Systematic exposition -	2 Hours
Helicon Discharge. Plasma jets at atmospheric pressure. Dusty	lecture. Examples	
plasmas.		
Applications; Thermonuclear fusion plasma. The Lawson	Systematic exposition -	4 Hours
criterion. Present and perspectives. Plasma propulsion.	lecture. Examples	
		2 Hours

References:

Gh. Popa, "Fizica plasmei" www.phys.uaic.ro; M.A Lieberman, A.J. Lichetenberg, "Principles of plasma discharges and materials processing", John Wiley, New York, 1994; Y.P. Raizer, "Gas discharges physics", Springer-Verlag Berlin, 1991; P. Bellan, "Fundamentals of plasma physics", Cambridge University Press, 2006; A. Piel, "Plasma physics", Springer-Verlag Berlin Heidelberg, 2010; R. Huddlestone, S.L. Leonard, "Plasma diagnostic techniques", Academic Press, New York, 1965; W. Lochte-Holtgreven, "Plasma diagnostics", Amsterdam, North-Holland, 1968.

7.3 Practicals	Teaching techniques	Observations
Electrical breakdown of gases in the presence of a magnetic field.	Directed practical activity	4 Hours
Determination of the electronic temperature by the Johnson and	Directed practical activity	4 Hours
Malter method		
Determination of the spatial distribution of the electron	Directed practical activity	4 Hours
concentration in the plasma		

Determination of the energy distribution function of electrons in	Directed practical activity	4 Hours
the plasma by the Druyvesteyn method		
Diagnostics of plasmas by spectral optical methods	Directed practical activity	4 Hours
Plasma jets at atmospheric pressure. Applications	Directed practical activity	4 Hours
The reflex plasma reactor.	Directed practical activity	4 Hours

: V.Covlea, H. Andrei, "Diagnosticarea plasmei – Lucrari de laborator", Editura Universitatii din Bucuresti, 2001; D. Ciobotaru, V. Covlea, C. Biloiu, "Gaze ionizate – Lucrari de laborator", Editura Universității din București, București, 1992; C. Negrea, V. Manea, C. Vancea, A. Tudorica, V. Covlea – Ingineria plasmei, Editura Universitatii din Bucuresti, Bucuresti, 2011.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to plan the contents, to choose the teaching/learning methods, given the special importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar subjects taught at universities in the country and abroad. The content of the discipline is according to the requirements of employment in research institutes in optics, plasma and laser physics and in education (under the law).

9. Assessment

7. Assessing			
Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test	50%
Minimal	Requirements for mark 5 (10 points scale)		
requirements	Getting the average 5.		
for passing	Completion of all laboratory works and grade 5 in the colloquium – for the laboratory		
the exam	The correct exposure of the indicated subjects to obtain a score of 5 in the final exam.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lector dr. Bazavan Marian Cornel Lector dr. Bazavan Marian Cornel

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.204.2 Thin films optics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Thin films optics
2.2. Teacher	Associate Professor Ovidiu Theodor Toma/ Associate Professor Doiniţa
	Bejan
2.3. Tutorials/Practicals instructor(s)	Associate Professor Ovidiu Theodor Toma / Associate Professor Doiniţa
	Bejan
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of el	lectronic res	ources, field rese	earch		33
Preparation for practicals/tutorials/projects/reports/homework				33	
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

4.1. curriculum	Taking courses: Optics, Electricity and Magnetism, Fundamentals of Atomic Physics	
4.2. competences	4.2. competences Use of software packages for data analysis and processing	

5. Conditions/Infrastructure (if necessary)

	· · · · · · · · · · · · · · · · · · ·
5.1. for lecture	Multimedia equipped class (videoprojector)
5.2. for tutorials/practicals	Spectroscopy laboratory

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Preparation of thin films by pulsed laser deposition (PLD).	Systematic exposition -	4 Hours
Experimental considerations. Physics of the processes involved.	lecture. Examples	
Optical ellipsometry. Fundamental ellipsometric equations.	Systematic exposition -	6 Hours
Single-wave ellipsometry (SWE). Null ellipsometry (NE).	y (NE). lecture. Examples	
Imaging ellipsometry (IE). Applications to refractive index		
measurement of thin films.		
Instrumentation, types of ellipsometers (SWE, NE, IE).	Systematic exposition -	4 Hours
	lecture. Examples	

Maxwell equations. Optical admittance. Fresnel formulas for	Systematic exposition -	2 Hours
dielectrics. Tilted optical admittance. Absorbing media.	lecture. Examples	
Reflectance of a thin film. Characteristic matrix of the thin	Systematic exposition -	4 Hours
film. Reflectance of an assembly of thin films. Transmittance,	lecture. Examples	
absorptance and potential transmittance.		
Quarter and half wave optical thickness. Anti-reflection coatings	Systematic exposition -	4 Hours
on high index substrates: single, double and multilayer coatings.	lecture. Examples	
Anti-reflection coatings on low index substrates: single, double		
and multilayer coatings		
High reflectance mirror coatings. Beam splitters with metallic	Systematic exposition -	4 Hours
and dielectric layers. Optical filters.	lecture. Examples	

- 1. Zdenek Knittl, Optics of thin films, John Wiley and Sons, 1976
- 2. H. Angus Macleod, Thin films optical filters, Taylor and Francis Group, 2010.
- 3. Doina Bejan, Note de curs, 2024.
- 4. A. Piegari, F. Flory, Optical thin films and coating (From materials to applications), Woodhead Publishing, 2013.
- 5. H.G. Tompkins, Handbook of ellipsometry, Springer, 2005.
- 6. R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light, North-Holland, 1999.
- 7. H. Fujiwara, Spectroscopic ellipsometry: principles and applications, Wiley, 2007.
- 8. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale, Springer, 2013.

7.2 Tutorials	Teaching techniques	Observations
Calculation of the transfer matrix for various layers. Reflectance		2 Hours
of a single layer coating in s- and p-polarization.		
Reflectance of two, three and four layers coating.		4 Hours
Protection of metal thin films. Neutral beam splitters.		1 Hour

References:

- 1. Zdenek Knittl, Optics of thin films, John Wiley and Sons, 1976
- 2. H. Angus Macleod, Thin films optical filters, Taylor and Francis Group, 2010.
- 3. Doina Bejan, Note de curs, 2024.
- 4. A. Piegari, F. Flory, Optical thin films and coating (From materials to applications), Woodhead Publishing, 2013

7.3 Practicals	Teaching techniques	Observations
Asymmetrical reflectors.	Guided practical activity	1 Hour
Study of an ellipsometer in monochromatic light (He-Ne laser). Alignment, calibration, refractive index and thickness measurements for thin films.	Guided practical activity	2 Hours
Study of an ellipsometer in polychromatic light (Xe lamp). Alignment, calibration, recording of ellipsometric spectra.	Guided practical activity	2 Hours
Modeling of ellipsometric spectra. Optical models.	Guided practical activity	2 Hours

References:

- 1. A. Piegari, F. Flory, Optical thin films and coating (From materials to applications), Woodhead Publishing, 2013.
- 2. H.G. Tompkins, Handbook of ellipsometry, Springer, 2005.
- 3. R.M.A. Azzam, N.M. Bashara, Ellipsometry and polarized light, North-Holland, 1999.
- 4. H. Fujiwara, Spectroscopic ellipsometry: principles and applications, Wiley, 2007.
- 5. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale, Springer, 2013.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, the subject holders consulted the contents of similar subjects taught at universities abroad (Comenius University, Bratislava). The content of the subject is in accordance with the requirements for employment in research institutes in physics and materials science and in teaching (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity, coherence and brevity of exposition; Correct use of models, formulae and calculation relationships; Ability to exemplify; 	Written test	60%
Tutorial	- Application of specific solution methods for the given problem;	continuous evaluation	20%
Practical	- Interpretation of results;	Laboratory colloquium	20%
Minimal	Mandatory attendance: 50% of classes, seminars and 80% of laboratory work. The correct presentation		
requirements for passing the exam	of the subjects indicated for obtaining a score of 5 in the final exam in the two part of the course. Failure to obtain score 5 in one of these subjects means that the student has not passed the exam. The final score will be the average of the grades obtained in the two subjects if the student obtained a score		
	greater than or equal to 5 in each of the two subjects.		

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Associate Professor Ovidiu Theodor Associate Professor Ovidiu Theodor Toma
Toma

Associate Professor Doiniţa Bejan

Associate Professor Doinița Bejan

Date of approval

Head of department
name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.204.2 Design of optical systems

1. Study program

University of Bucharest
Faculty of Physics
Theoretical Physics, Mathematics, Optics, Plasma and Lasers
Fizică/Physics
Master
Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Design of optical systems
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

5. Total estillated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study		,		
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of electronic resources, field research		33			
Preparation for practicals/tutorials/projects/reports/homework			33		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

	`	• /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

or conditions, initiated actual of incomments	
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R4. The student/graduate deduces working formulas for calculations with physical quantities, correctly using fundamental principles and laws of physics, with emphasis on electromagnetism and light-matter interaction R7. The student/graduate explains the operating principle of a measuring device or a physical method, highlighting the algorithm used. R10. The student/graduate identifies the appropriate mathematical models and algorithms for analyzing experimental data in electromagnetism and light-matter interaction
Skills	R4. The student/graduate critically evaluates a scientific communication or a specialized report with a low degree of difficulty, analyzing the arguments and conclusions presented. R7. The student/graduate prepares scientific reports and presentations, building logical and coherent arguments on general physics topics. R10. The student/graduate uses the appropriate models and algorithms to make predictions on phenomena specific for electromagnetism and light-matter interaction

Responsibility	R4. The student/graduate responsibly performs independent work tasks and contributes to
and autonomy	interdisciplinary approaches
	R7. The student/graduate carries out research internships in specialized units, writing reports on
	the activity and results obtained.
	R10. The student/graduate identifies and uses appropriate mathematical tools in agreement with
	ethical and deontological principles

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
The equation of the eikonal. Lagrange invariant. Fermat's	Systematic exposition -	4 Hours
principle. Ray equation	lecture. Examples	
Sisteme liniare. Point Spread Function, Optical Transfer Function	Systematic exposition -	4 Hours
	lecture. Examples	
Diffraction, aberrations and image quality. Specific geometric	Systematic exposition -	4 Hours
aberrations	lecture. Examples	
Matrix formulation of geometric optics. Thick lens. Complex	Systematic exposition -	4 Hours
diopter system.	lecture. Examples	
Imagery with Gaussian beam. Thin optical films. Modeling and	Systematic exposition -	4 Hours
analysis of optical sensor systems.	lecture. Examples	
CAD. Specific software packages (WinLens3D BasicCAD	Systematic exposition -	4 Hours
OPTIC, OSLO, VOB, ZEMAX, etc.)	lecture. Examples	
Optical design process. Evaluation of the performance of	Systematic exposition -	4 Hours
the simulation. Considerations on the manufacture of optical	lecture. Examples	
systems.		

References:

Bibliography: •Geometrical Optics, Mircea Bulinski, Editura Universitatii Bucuresti (2014); •Max Born and Emil Wolf, Principles of Optics, Cambridge University Press 1999 •L Hazra, Foundations of Optical System Analysis and Design, CRC Press 2021; I S Amiri, M Ghasemi, Design and Development of Optical Dispersion Characterization Systems, Springer International Publishing 2019

7.3 Practicals	Teaching techniques	Observations
Metode matriceale în optică paraxială. Matricea de transfer.	Problem solving	2 Hours
Punctele cardinale ale unui sistem optic.		
Funcția de transfer de modulare și contrast. Exemple in calitatea	Problem solving	2 Hours
si transformarea imaginii.		
Metoda de propagare a fasciculului în pași de divizare.	Problem solving	2 Hours
Propagarea fasciculului în medii neliniare		
Cristale uniaxiale; Birefringenţa.Plăcile semiunda, Indicele	Problem solving	2 Hours
elipsoidului.		
Efect acousto-optic. Modularea intensității unui fascicul laser.	Problem solving	2 Hours
CAD. Utilizare pachete software specifice (CAD OPTIC, OSLO,	Problem solving	2 Hours
VOB, ZEMAX, etc.)		
Studii de caz pentru optimizarea proiectării lentilelor	Problem solving	2 Hours

References:

Bibliography: •Geometrical Optics, Mircea Bulinski , Editura Universitatii Bucuresti (2014) •Scott W. Teare, Optics Using MATLAB, SPIE PRESS BOOK 2017 •Le Nguyen Binh, Scott W. Teare, Optical Fiber Communication Systems with MATLAB® and Simulink® Models, , CRC Press 2014 •L Hazra, Foundations of Optical System Analysis and Design, CRC Press 2021

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The choice of teaching/learning methods and the drawing of the guidelines of the content were corroborated with the content of similar subjects taught at universities in the country and abroad (Imperial College London; Wyant College of Optical Sciences - University of Arizona; University of Colorado Boulder; Indian Institute of Space Science and Technology). The content of the discipline is according to the requirements of employment in research institutes in optics, plasma and lasers and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity, coherence and brevity of exposure; •Proper use of models, formulas, computational relationships and routines; •The ability to exemplify;	Written test/oral examination	50%
Practical	Knowledge and use of design and verification techniques; •Interpretation of results;	Homeworks	50%
Minimal requirements for passing the exam			

Practicals/Tutorials/Project instructor(s),

Date, Teacher's

name and signature, name and signature

13.07.2025

Date of approval Head of department

name and signature 15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.211.1 Modeling methods in plasma physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Modeling methods in plasma physics	
2.2. Teacher Prof. Virgil Baran		
2.3. Tutorials/Practicals instructor(s) Prof. Virgil Baran		
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification	

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bibl	iography	48
Research in library, study of electronic resources, field research			24		
Preparation for practicals/tutorials/projects/reports/homework			23		
Tutorat					0
Other activities			0		
3.7. Total hours of individual study			95		
3.8. Total hours per semester			125		
3.9. ECTS					5

4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Linear Algebra, Analytical Mechanics, Electrodynamics. Quantum
	Mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and data
	processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Videoprojector
5.2. for tutorials/practicals	Scientific computing laboratory

6. Learning outcomes

Knowledge	R4. The student/graduate deduces working formulas for calculations with physical quantities, correctly using fundamental principles and laws of physics, with emphasis on electromagnetism and light-matter interaction
Skills	R4. The student/graduate critically evaluates a scientific communication or a specialized report with a low degree of difficulty, analyzing the arguments and conclusions presented.
Responsibility and autonomy	R4. The student/graduate responsibly performs independent work tasks and contributes to interdisciplinary approaches

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Fundamentals of plasma physics. Debye length, Landau length,	Systematic exposition -	2 Hours
collective oscillations and plasma frequency, Larmour frequency	lecture. Examples	
and plasma magnetization.		

Derivation of fluid equations in plasmas (Vlasov-type equations,	Systematic exposition -	2 Hours
two-component fluid equations, magnetohydrodynamic	lecture. Examples	
equations).		
Wave propagation in plasmas. Where Alfvén. Dispersion	Systematic exposition -	2 Hours
relations. Dynamic instabilities.	lecture. Examples	
Boltzmann-Vlasov and Boltzmann-Maxwell type transport	Systematic exposition -	2 Hours
equation.	lecture. Examples	
Test particle method. Derivation of particle-in-cell equations.	Systematic exposition -	4 Hours
Study on shape functions.	lecture. Examples	
Self-consistent solution of field equations and those describing	Systematic exposition -	4 Hours
particle dynamics. The Boris particle time propagation algorithm.	lecture. Examples	
Courant stability condition.		
Symplectic and near-symplectic methods for the numerical	Systematic exposition -	2 Hours
solution of equations describing particle dynamics.	lecture. Examples	
Symplecticity. Conservation of energy and volume in phase		
space.		
Comparative presentation of the main particle-in-cell codes (in	Systematic exposition -	2 Hours
particular, EPOCH, VSim, PIConGPU, OSIRIS)	lecture. Examples	

- 1. P.M. Bellan, Fundamentals of plasma physics, Cambridge University Press, 2008.
- 2. A. Piel, Plasma physics. An introduction to laboratory, space, and fusion plasmas, Springer, 2010.
- 3. P. Mulser şi D. Bauer, High power laser-matter interaction, Springer, 2010.
- 4. C.K. Birdsall şi A.B. Langdon, Plasma physics via computer simulation, Taylor and Francis, 2004
- 5. B. Leimkuhler şi S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.

7.3 Practicals	Teaching techniques	Observations
Analytical solutions of Maxwell equations	Exposition; problem solving	1 Hour
Analytical solutions of Boltzman equations	Exposition; problem solving	1 Hour
Analytical solutions of Vlasov equations	Exposition; problem solving	2 Hours
Numerical solution of differential equations with Hamiltonian structure by symplectic and almost symplectic methods. Writing own code in Octave/python/C	Supervized Practical Activity	2 Hours
Numerical solution of particle-in-cell equations. Observation of laser-plasma interaction. Use EPOCH program	Supervized Practical Activity	2 Hours
Comparative numerical study on EPOCH, VSim, PIConGPU, OSIRIS. Interaction of a variable intensity laser pulse with gaseous and solid targets in two- and three-dimensional setups.	Supervized Practical Activity	2 Hours

References:

- 1. P. Mulser și D. Bauer, High power laser-matter interaction, Springer, 2010.
- 2. C.K. Birdsall şi A.B. Langdon, Plasma physics via computer simulation, Taylor and Francis, 2004

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics, as well as in education (according to the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
Practical	- Ability to use specific problem-solving methods - Analysis of the results	Homework	30%

Minimal	At least 50% of exam score and of homeworks.
requirements	
for passing	
the exam	

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature 13.07.2025 Prof. Virgil Baran Prof. Virgil Baran

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.211.2 Homogeneous and inhomogeneous waveguides. Applications

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Homogeneous and inhomogeneous waveguides. Applications	
2.2. Teacher	Prof. dr Daniela DRAGOMAN	
2.3. Tutorials/Practicals instructor(s)	Prof. dr Daniela DRAGOMAN	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification	

3. Total estimated time

3. Iotal estillated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	30	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	0/10/0
Distribution of estimated time	for study		,		
Learning by using one's own course notes, manuals, lecture notes, bibliography					48
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				95	
3.8. Total hours per semester				125	
3.9. ECTS				5	

4. Prerequisites (if necessary)

	<u> </u>
4.1. curriculum	Electricity and magnetism, Optics, Equations of mathematical physics
4.2. competences	Knowledge of scientific calculus

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Computer room

6. Learning outcomes

Knowledge	R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena and fundamental laws of electromagnetism and of light-matter interaction
	R4. The student/graduate deduces working formulas for calculations with physical quantities, correctly using fundamental principles and laws of physics, with emphasis on electromagnetism and light-matter interaction R6. The student/graduate identifies optimal analysis alternatives for obtaining relevant information, making the connection with the fundamental principles of physics.
Skills	R1. The student/graduate uses the concepts and methods specific to the modeling of physical phenomena related to electromagnetism and light-matter interaction R4. The student/graduate critically evaluates a scientific communication or a specialized report with a low degree of difficulty, analyzing the arguments and conclusions presented. R6. The student/graduate writes and presents a scientific or professional report, respecting ethical requirements and quality standards.

Responsibility	R1. The student/graduate presents scientific or popularization papers and seminars on the
and autonomy	fundamentals of electromagnetism and light-matter interaction, adapting the content
	R4. The student/graduate responsibly performs independent work tasks and contributes to
	interdisciplinary approaches
	R6. The student/graduate uses information sources autonomously

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Introductory notions: homogeneous waveguides. Types.	Systematic exposition -	2 Hours
Relevant parameters.	lecture. Examples	
Modes in planar waveguides. Modes in optical fibers. Dispersion	Systematic exposition -	4 Hours
relations. Pulse propagation in waveguides	lecture. Examples	
Power transfer between homogeneous waveguides. Coupled	Systematic exposition -	4 Hours
mode method. Applications in optical integrated circuits and laser	lecture. Examples	
resonators		
Inhomogeneous waveguides: diffraction gratings in waveguides.	Systematic exposition -	4 Hours
Coupled mode theory in passive and active periodic structures.	lecture. Examples	
Applications in integrated laser configurations		
Coupling of light sources to waveguides. Coupling efficiency.	Systematic exposition -	2 Hours
Coupling methods	lecture. Examples	
Waveguide sensors. Detection principles. Types. Performances	Systematic exposition -	4 Hours
	lecture. Examples	

References:

- 1. A.W. Snyder, J.D. Love, Optical Waveguide Theory, Chapman and Hall, 1983
- 2. B.E.A. Saleh, M.C. Teich, Fundamental of Photonics, 2nd edition, Wiley, 2007, Chapter 21: Nonlinear Optics
- 3. Număr special al revistei Sensors, vol. 18, octombrie 2018, cu acces liber: https://www.mdpi.com/journal/sensors/special_issues/Waveguide_Sensors
- 4. D. Dragoman, Optoelectronica integrata, Editura Univ. Bucuresti, 2003
- 5. D. Dragoman, Lecture notes

7.3 Practicals	Teaching techniques	Observations
Light propagation in planar curved waveguides. Power loss. Applications	Guided practical activity	3 Hours
Power transfer in various many-waveguide configurations	Guided practical activity	3 Hours
Applications of coupled mode theory. Designing an optical switch	Guided practical activity	4 Hours

References:

- 1. D. Dragoman, Optoelectronica integrata, Editura Univ. Bucuresti, 2003
- 2. A. Yariv, Optical Electronics, CBS College Publishing, 3rd edition, 1985
- 3. A.W. Snyder, J.D. Love, Optical Waveguide Theory, Chapman and Hall, 1983

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The contents of the discipline is similar to that of other lectures taught at universities in Romania (Univ. Alexandru Ioan Cuza, Iași) and abroad (Boston University, USA, Tokyo Institute of Technology), allowing the student to develop competences and abilities to model the propagation of electromagnetic fields in passive and active waveguides, and to design experimental configurations to observe the specific phenomena, themes of interest for research institutes and companies with activities in the area of Optics, Laser Physics and/or Materials Physics, especially Nanotechnologies, as well as in teaching.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight î	ìn
			final mark	

Lecture	- Clarity and coherence of exposition;	Written exam	67%
	- Correct use of the methods/		
	physical models;		
	- The ability to give specific examples;		
Practical	- Ability to use specific problem solving methods	Written exam	33%
Minimal	Correct solving of subjects indicated as required for	obtaining mark 5 at both written e	xams
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr Daniela DRAGOMAN Prof. dr Daniela DRAGOMAN

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.107 Volunteering

1. Study progra

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3. Ittai estimateu time					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study	•			
Learning by using one's own c	ourse note	s, manuals, lectur	e notes, b	ibliography	13
Research in library, study of electronic resources, field research					6
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				25	
3.8. Total hours per semester				25	
3.9. ECTS				1	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DFC.112 Fundamental processes in ionized gases

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Fundamental processes in ionized gases		
2.2. Teacher	Conf.dr. Iulian Ionita; Lect.dr. Marian Bazavan		
2.3. Tutorials/Practicals instructor(s)	Conf.dr. Iulian Ionita; Lect.dr. Marian Bazavan		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation oral 2.7.Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bibl	iography	10
Research in library, study of el	lectronic res	ources, field rese	earch		5
Preparation for practicals/tutorials/projects/reports/homework					4
Tutorat					0
Other activities					0
3.7. Total hours of individual study					19
3.8. Total hours per semester				75	
3.9. ECTS				3	

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Atomic Physics, Quantum mechanics, Thermodinamics and Statistical Physics,
	Plasma Physics
4.2. competences	Knowledge about: Mathematical analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Plasma Physics Laboratory

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Plasma in Nature. Plasma types.	Systematic exposition -	2 Hours
	lecture. Examples	
Production of plasmas	Systematic exposition -	6 Hours
	lecture. Examples	
Plasma diagnosis (electric and spectral techniques)	Systematic exposition -	6 Hours
	lecture. Examples	
Space Plasma	Systematic exposition -	2 Hours
Sun, stars. White dwarfs	lecture. Examples	

Solar wind	Systematic exposition -	4 Hours
	lecture. Examples	
The ionosphere	Systematic exposition -	2 Hours
	lecture. Examples	
Magnetosphere	Systematic exposition -	2 Hours
	lecture. Examples	
Auroras (boreal and austral)	Systematic exposition -	1 Hour
	lecture. Examples	
The lightning. The lightning rod. Plasmoids, ball	Systematic exposition -	1 Hour
lightning	lecture. Examples	
Shock wave plasma. Entry of space vehicles into	Systematic exposition -	2 Hours
the atmosphere	lecture. Examples	

References:

- 1. L. Tonks, I. Langmuir, Phys. Rev. 34, 876, 1929; L. Tonks, Am. J. Phys. 35, 857, 1967
- 2. J.L. Delcroix, A. Bers, Physique des Plasmas vol.1, InterEditions et CNRS Editions, Paris, 1994
- 3. Y.P. Raizer, Electric discharges through gases, Springer-Verlag, Berlin Heidelberg New York, 1997
- 4. R.W. Schunk, A.F. Nogy, Ionospheres: Physics, Plasma Physics and Chemistry, Cambridge University Press, 1999

7.3 Practicals	Teaching techniques	Observations
Presentation of the laboratory, activities and work regulations in	Directed practical activity	4 Hours
the laboratory (safety work rules).		
The comparative study of plasmas.	Directed practical activity	8 Hours
Gases breakdown at low and medium pressures.	Directed practical activity	8 Hours
Methods of experimental study of ionospheres	Directed practical activity	4 Hours
Plasmoids	Directed practical activity	4 Hours

References:

1. D. Ciobotaru, V. Covlea, C. Biloiu, Gaze ionizate - lucrari de laborator, Editura Universitatii din Bucuresti, 1992

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to outline the contents, the choice of teaching/learning methods, given the special importance of the discipline for applications in modern technology, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Princeton University, Berkeley University, A. I University Cuza from Iasi). The content of the discipline is in accordance with the employment requirements in research institutes with topics in plasma, lasers, atmospheric physics and in education (under the law).

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture - Clarity and coherence of exposition - Correct use of the methods/ physical models - The ability to give specific examples		Colloquium	80%
Practical	Knowledge and use of experimental techniques;Interpretation of the results	Laboratory colloquium	20%
Minimal requirements for passing the exam	Requirements for mark 5 (10 points scale) Getting the average 5. Completion of all laboratory works and grade 5 in The correct exposure of the indicated subjects to o	*	

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025 Conf.dr. Iulian Ionita; Lect.dr. Marian Bazavan Bazavan

Date of approval

Head of department
name and signature
15.07.2025

Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.113 Elemenets of Complexity theory

1. Study program

restary brogram	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Elemenets of Complexity theory
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation oral 2.7.Classification

3. Total estimated time

5. Iotal estillated tille			1		1
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	10
Research in library, study of electronic resources, field research					5
Preparation for practicals/tutorials/projects/reports/homework					4
Tutorat					0
Other activities					0
3.7. Total hours of individual study					19
3.8. Total hours per semester				75	
3.9. ECTS					3

4. Prerequisites (if necessary)

-	`	
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

	· · · · · · · · · · · · · · · · · · ·
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena
	and fundamental laws of electromagnetism and of light-matter interaction
	R5. The student/graduate correctly describes physical systems, using specific theories and tools to
	characterize them.
	R6. The student/graduate identifies optimal analysis alternatives for obtaining relevant information,
	making the connection with the fundamental principles of physics.
	R7. The student/graduate explains the operating principle of a measuring device or a physical
	method, highlighting the algorithm used.
	R9. The student/graduate identifies methods, techniques, and laboratory instruments necessary for
	designing and conducting physical experiments.

Skills	R1. The student/graduate uses the concepts and methods specific to the modeling of physical
	phenomena related to electromagnetism and light-matter interaction
	R5. The student/graduate collects and interprets data resulting from the application of appropriate
	scientific methods, integrating the results obtained into an analytical framework.
	R6. The student/graduate writes and presents a scientific or professional report, respecting ethical
	requirements and quality standards.
	R7. The student/graduate prepares scientific reports and presentations, building logical and coherent arguments on general physics topics.
	R9. The student/graduate correctly interprets the data and deduces working formulas for
	calculations with physical quantities, appropriately applying specific fundamental principles and
	laws.
Responsibility	R1. The student/graduate presents scientific or popularization papers and seminars on the
Responsibility and autonomy	R1. The student/graduate presents scientific or popularization papers and seminars on the fundamentals of electromagnetism and light-matter interaction, adapting the content
	fundamentals of electromagnetism and light-matter interaction, adapting the content
	fundamentals of electromagnetism and light-matter interaction, adapting the content R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines
	fundamentals of electromagnetism and light-matter interaction, adapting the content R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations.
	fundamentals of electromagnetism and light-matter interaction, adapting the content R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously
	fundamentals of electromagnetism and light-matter interaction, adapting the content R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously R7. The student/graduate carries out research internships in specialized units, writing reports on
	fundamentals of electromagnetism and light-matter interaction, adapting the content R5. The student/graduate efficiently organizes his/her schedule and resources, respecting deadlines and safety regulations. R6. The student/graduate uses information sources autonomously R7. The student/graduate carries out research internships in specialized units, writing reports on the activity and results obtained.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
COMPLEX SYSTEMS IN NATURE AND SOCIETY -	Systematic exposition -	4 Hours
definitions and paradigms. Stochastic and deterministic models.	lecture. Examples	
Determinism and predictability		
COMPLEXITY THEORY. Measures and definitions of	Systematic exposition -	4 Hours
complexity. ALGORITHMIC (COMPUTATIONAL)	lecture. Examples	
MEASUREMENT OF COMPLEXITY. THE THEORY OF		
MODELING AND SIMULATION. Modeling, simulation and		
prediction of complex systems		
CONSTITUENT ELEMENTS OF SYSTEMS MODELING:	Systematic exposition -	4 Hours
Hierarchy of system specification; Systems analysis; The	lecture. Examples	
morphisms of the system specification. Structure of modeling		
and simulation of systems		
SIMULATION BY DISCRETE EVENTS; Model Simulation	Systematic exposition -	4 Hours
Verification; Statistical analysis of simulated data; Statistical	lecture. Examples	
validation techniques.		
MODELING AND SIMULATION OF DISCRETE	Systematic exposition -	4 Hours
DETERMINISTIC SYSTEMS. Cellular automata; Self-	lecture. Examples	
organization; Artificial neural networks		
COMPLEX SYSTEMS AND DYNAMICAL SYSTEMS -	Systematic exposition -	4 Hours
Phase space, maps and flows, autonomous and non-autonomous	lecture. Examples	
systems; chaotic deterministic systems		
ANALYSIS OF TIME SERIES – linear prediction:	Systematic exposition -	4 Hours
stationary analysis; tendency, probabilities; Fourier analysis;	lecture. Examples	
autocorrelation analysis; R/S analysis of the rescalare domain;		
sonification.		

References:

Bibliography: •M. Bulinski, "Econofizica si Complexitate", Ed Universitatii Bucuresti 2007 •Ed. M. Bulinski, "Econofizica si Complexitate, – Lecturi": Scoala de Vara: 2005, 2006, 2007, Ed Universitatii Bucuresti. •"Theory of Modeling and Simulation", Bernard P. Zeigler, Herbert Praehofer, Tag Gon Kim, Academic Press (2000) •Stephen Wolfram, A New Kind of Science •M Sotomayor, D Perez-Castrillo, F Castiglione, Complex Social and Behavioral Systems: Game Theory and Agent-Based Models. Encyclopedia of Complexity and Systems Science Series, 2020

7.2 Tutorials	Teaching techniques	Observations
SIMULATION THROUGH DISCRETE EVENTS.	Problem solving	4 Hours
Construction, simulation and analysis of a model.		
AUTOMATIC CELLULAR SELF-ORGANIZATION; Artificial	Problem solving	4 Hours
neural networks (networks of coupled grids)		
ANALYSIS OF TIME SERIES. Linear and nonlinear prediction.	Problem solving	4 Hours
Analysis of the degree of determinism.		
DNAMICS DETERMINIST CHAOTIC Controlul chaos.	Problem solving	4 Hours
Obtaining order by injecting disorder.		
COMPLEX SYSTEMS AND DYNAMIC SYSTEMS Phase	Problem solving	4 Hours
space, autonomous and non-autonomous systems		
ARCH PROCESSES AND GARCH statistical properties and	Problem solving	4 Hours
determination of parameters		
MODELE STOHASTICE ALE DINAMICII PREȚURILOR	Problem solving	4 Hours

References:

Bibliography: :•M. Bulinski, "Econofizica si Complexitate", Ed Universitatii Bucuresti 2007 • "Chaos and Time-Series Analysis", Julien Clinton Sprott, Oxford University Press (2004) • "A First Course in Probability", Sheldon M. Ross, Prentice Hall (2002) • "Nonlinear Time Series Analysis", Holger Kantz, Thomas Schreiber, Cambridge University Press (2004) • "Simulation", Sheldon M. Ross, Academic Press (2002)

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

In order to draw the guidelines of the contents, the choice of teaching/learning methods, given the special importance of the discipline for modnal science, the holders of the discipline consulted the content of similar disciplines taught at universities in the country and abroad (Massachusetts Institute of Technology; Stanford University; Max Planck Institute for Software Systems; University of Bergen). The content of the discipline is according to the requirements of employment in research institutes in optics, plasma and lasers and in education (under the law).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	•Clarity, coherence and brevity of exposure; •Proper use of models, formulas, computational relationships and routines; •The ability to exemplify;	Written test/oral examination	50%
Tutorial	Knowledge and use of simulation and experimental techniques •Interpretation of results;	Homeworks	50%
Minimal requirements for passing the exam			

Date, Teacher's name and signature,

Practicals/Tutorials/Project instructor(s),

name and signature

13.07.2025

Date of approval

Head of department name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DFC.114 Volunteering

1. S	Study	program
------	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3. Ittai estimateu time					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study	•			
Learning by using one's own c	ourse note	s, manuals, lectur	e notes, b	ibliography	13
Research in library, study of electronic resources, field research			6		
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat			0		
Other activities					0
3.7. Total hours of individual study			25		
3.8. Total hours per semester			25		
3.9. ECTS			1		

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.205 Volunteering

1. Study p	program
------------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3. Ittai estimateu time					
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study	•			
Learning by using one's own c	ourse note	s, manuals, lectur	e notes, b	ibliography	13
Research in library, study of electronic resources, field research					6
Preparation for practicals/tutorials/projects/reports/homework					6
Tutorat					0
Other activities					0
3.7. Total hours of individual study					25
3.8. Total hours per semester				25	
3.9. ECTS					1

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment methods	Weight în
		final mark
Minimal		
requirements		
for passing		
the exam		

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.206 Applied optics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Applied optics
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time for study					
Learning by using one's own course notes, manuals, lecture notes, bibliography					
Research in library, study of electronic resources, field research					5
Preparation for practicals/tutorials/projects/reports/homework					4
Tutorat					0
Other activities					0
3.7. Total hours of individual study					19
3.8. Total hours per semester					75
3.9. ECTS					3

4. Prerequisites (if necessary)

4.1. curriculum		
4.2. competences	3	

5. Conditions/Infrastructure (if necessary)

	· · · · · · · · · · · · · · · · · · ·
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Metrology of optical systems and optical metrology of surfaces	Systematic exposition -	4 Hours
	lecture. Examples	
Propagation of optical fields and special interferometric	Systematic exposition -	4 Hours
techniques	lecture. Examples	
Nonlinerar Optics - magneto-optical effects	Systematic exposition -	4 Hours
	lecture. Examples	
Optical Litography. 3d techniques: fast prototyping.	Systematic exposition -	4 Hours
	lecture. Examples	
Adaptive and active optics	Systematic exposition -	4 Hours
	lecture. Examples	

Fotometry and radiometry, colorimetry, spectroscopy	Systematic exposition -	4 Hours	
applications in chemistry, biology, medicine, typographic	lecture. Examples		
technique, displays, etc			
Lsits, fiber optics and waveguide guides. new trends in applied	Systematic exposition -	4 Hours	
optics lecture. Examples			

References:

Bibliography: :•"Optica", St. Levai, M. Bulinski, O. Toma, Ed. Univ. Buc. (2005); •Spectroscopie şi laseri. Aplicaţii", I. Iova, M. Bulinski, F. Iova, M. Băzăvanm, C. Biloiu, I. Gruia, Gh. Ilie, I. Winkler, Ed. Univ. Buc. (2001); •International Trends in Applied Optics, De Arthur Henry Guenther, Spie Press 2002; • "Optical Measurement Techniques and Applications", editor Pramod K. Rastogi, Artech House, Inc. London(1997) •William L. Wolfe, Rays, Waves and Photons: A compendium of foundations and emerging technologies of pure and applied optics, IOP Series in Emerging Technologies in Optics and Photonics (2020)

7.3 Practicals	Teaching techniques	Observations
DESIGN OF OPTICAL SYSTEMS Use of specialized CAD's	Directed practical activity	4 Hours
for the design of optical systems.		
MICRO-TOPOGRAPHY OF SURFACES. 3D-convolution	Directed practical activity	4 Hours
method in optical microscopy.		
DIGITAL INTERFERENTIAL HOLOGRAPHY	Directed practical activity	4 Hours
SPECKLE METHODS – photography and speckle inteferometry	Directed practical activity	4 Hours
DIGITAL PHOTOGRAMMETRY – analysis of volumes and	Directed practical activity	4 Hours
distances.		
COLORIMETRY – determination of color indices, calibration of	Directed practical activity	4 Hours
a color display		
ANALYSIS OF MAGNETO-OPTICAL ELECTS – Polarimetry,	Directed practical activity	4 Hours
Faraday effect, moke measurement principle		

References:

Bibliography: •"Optica", Ioan-Iovit Popescu si Emil Toader, Ed. Stiintifica si Enciclopedica, Bucuresti (1989); •Young M., "Optics and Lasers", in Springer Series in Optical Science Vol. 5, Springer Verlag N.Y.(1977)

•"Engineering Optics with MATLAB", Ting-Chung Poon, Taegeun Kim, (World Scientific Publishing Company 2006);

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The choice of teaching/learning methods and the drawing of the guidelines of the content were corroborated with the content of similar subjects taught at universities in the country and abroad (Imperial College London; Georgia Institute of Technology; Duke University). The content of the discipline is according to the requirements of employment in research institutes in optics, plasma and lasers and in education (under the law).

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	Clarity, coherence and brevity of exposure; •Proper use of models, formulas, computational relationships and routines; •The ability to exemplify;	Written test/oral examination	50%
Practical	Application of specific methods of solving for the given problem;	Homeworks	50%
Minimal			
requirements			
for passing			
the exam			

Teacher's name and signature,

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s), name and signature

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.207 Plasmonics and metamaterials

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title	Plasmonics and metamaterials		
2.2. Teacher	Prof. dr. Daniela DRAGOMAN		
2.3. Tutorials/Practicals instructor(s)	Prof. dr. Daniela DRAGOMAN		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bi	bliography	10
Research in library, study of electronic resources, field research					5
Preparation for practicals/tutorials/projects/reports/homework					4
Tutorat					0
Other activities					0
3.7. Total hours of individual study					19
3.8. Total hours per semester				75	
3.9. ECTS				3	

4. Prerequisites (if necessary)

-	•
4.1. curriculum	Electricity and magnetism, Optics, Equations of mathematical physics
4.2. competences	Knowledge of scientific calculus

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate understands and interprets the concepts, theories, principles, phenomena and fundamental laws of electromagnetism and of light-matter interaction R2. The student/graduate understands, explains and interprets concepts, theories, models and principles of physics, highlighting practical applications of electromagnetism and light-matter interaction R7. The student/graduate explains the operating principle of a measuring device or a physical method, highlighting the algorithm used.
Skills	R1. The student/graduate uses the concepts and methods specific to the modeling of physical phenomena related to electromagnetism and light-matter interaction R2. The student/graduate applies the principles and laws of physics in solving theoretical or practical problems in electromagnetism and light-matter interaction, including in partially unpredictable situations R7. The student/graduate prepares scientific reports and presentations, building logical and coherent arguments on general physics topics.

Responsibility and autonomy

- R1. The student/graduate presents scientific or popularization papers and seminars on the fundamentals of electromagnetism and light-matter interaction, adapting the content
- R2. The student/graduate manages technical or professional activities or projects, making decisions, including in partially unforeseen situations
- R7. The student/graduate carries out research internships in specialized units, writing reports on the activity and results obtained.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Surface plasmon polaritons. Definition. Dispersion relation.	Systematic exposition -	4 Hours
Excitation modes	lecture. Examples	
Plasmonic waveguides. Applications	Systematic exposition -	4 Hours
	lecture. Examples	
Localized plasmon at nanoparticle's surface. Applications	Systematic exposition -	4 Hours
	lecture. Examples	
Electric and magnetic metamaterials. Media with a negative	Systematic exposition -	6 Hours
refractive index	lecture. Examples	
Light propagation in media with a negative refractive index.	Systematic exposition -	6 Hours
Transformation optics	lecture. Examples	
Applications of metamaterials: planar lenses, invisibility shields	Systematic exposition -	4 Hours
	lecture. Examples	

References:

- 1. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007
- 2. M. Dragoman, D. Dragoman, Plasmonics: Applications to nanoscale terahertz and optical devices, Prog. Quantum Electron. 32, 1-41, 2008
- 3. N. Engheta, R.W. Ziolkowskii, Electromagnetic Metamaterials: Physics and Engineering Explorations, Wiley, 2006
- 4. J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966-3969, 2000
- 5. Special number of the journal Materials, vol. 8, October 2015, open access: https://www.mdpi.com/journal/materials/special_issues/plasmonic-materials?view=compact and listby=date
- 6. 5. Special number of the journal Nanophotonics, vol. 7, June 2018, open access: https://www.degruyter.com/view/j/nanoph.2018.7.issue-6/issue-files/nanoph.2018.7.issue-6.xml
- 7. D. Dragoman, Lecture notes

2 ,		
7.2 Tutorials	Teaching techniques	Observations
Finding the dispersion relation of surface plasmon polaritons in	Problem solving	6 Hours
various systems		
Field enhancement at the metal-dielectric interface. Applications	Problem solving	4 Hours
in SERS		
Transmission line analogy method for calculating the	Problem solving	4 Hours
transmission in slab plasmonic waveguides. Examples		
Calculation of the electric permittivity and magnetic permeability	Problem solving	6 Hours
in open metallic wires and rings		
Examples of transformation optics applications	Problem solving	5 Hours
Metasurfaces. Manipulation of the wavefront	Problem solving	3 Hours

References:

- 1. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007
- 2. W. Cai, V. Shalaev, Optical Metamaterials. Fundamentals and Applications, Springer, 2010

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The contents of the discipline is similar to that of other lectures taught at universities abroad (Univ. of Illinois, Rice University, ETH Zürich, Nanyang Technological University), allowing the student to develop competences and abilities to model the light-matter interaction at microscopic scale and to design experimental configurations for investigating systems and materials, of interest for research institutes with themes in Optics, Laser Physics and/or Materials Physics, especially Nanotechnologies, as well as in teaching

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în		
			final mark		
Lecture	- Clarity and coherence of exposition;	Written exam	50%		
	- Correct use of the methods/				
	physical models;				
	- The ability to give specific examples				
Tutorial	- Ability to use specific problem solving methods	Written exam	50%		
Minimal					
requirements					
for passing					
the exam					

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr. Daniela DRAGOMAN Prof. dr. Daniela DRAGOMAN

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.212 Volunteering

1. Study progran	1.	Study	program
------------------	----	-------	---------

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Photonics, Plasma and Lasers

2. Course unit

2.1. Course unit title			Vo	lunteering			
2.2. Teacher							
2.3. Tutorials/Practicals instructor(s)							
2.4 Year of study	2	2.5. Semester	2	2.6. Type of evaluation	verificare	2.7.Classification	

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0			
3.4. Total hours per semester 0 3.5. Lectures 0 3.6. Tutorials/Practicals/Projects								
Distribution of estimated time for study								
Learning by using one's own course notes, manuals, lecture notes, bibliography								
Research in library, study of electronic resources, field research								
Preparation for practicals/tutorials/projects/reports/homework								
Tutorat								
Other activities								
3.7. Total hours of individual study					25			
3.8. Total hours per semester								
3.9. ECTS								

4. Prerequisites (if necessary)

	(
4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	
Skills	
Responsibility	
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal			
requirements			
for passing			
the exam			

Teacher's

name and signature,

name and signature

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s),

Head of department name and signature Lect. dr. Rozana ZUS