Programul de studii: Theoretical and Computational Physics

Domeniul de studii: Fizică/Physics

Ciclul de studii: Master

Discipline obligatorii:

DI.101 Quantum Statistical Physics

DI.102 Group Theory and Applications in Physics

DI.103 Ethics and academic integrity

DI.107 Relativistic quantum mechanics and Quantum electrodynamics

DI.108 Theory of Nuclear systems and photonuclear reactions

DI.201 Introduction to quantum theory of fields

DI.207 Introduction to gravity theory and cosmology

DI.208 Research activity (traineeship – 180 hours)

DI.209 Finalization of master thesis (90 hours / 4 weeks)

DI.210 Public defense of master thesis

Discipline optionale:

DO.104.1 Nonlinear dynamics, chaos, physics of complex systems

DO.104.2 Special chapters of Mathematics

DO.105.1 Artificial intelligence and machine learning in theoretical physics

DO.105.2 Simulation methods in theoretical physics

DO.109.1 Interaction of laser radiation with matter

DO.109.2 Quantum Optics

DO.110.1 Introduction to quantum theory of identical particles

DO.110.2 Theory of critical phenomena

DO.111.1 Quantum information and communication

DO.111.2 Collision theory

DO.202.1 Advanced methods in statistical physics

DO.202.2 Computational methods for electronic structures of condensed systems

DO.203.1 Computational methods in modern physics

DO.203.2 Theory of intense laser radiation interaction with atomic and nuclear systems

DO.204.1 Non-abelian gauge theories and standard model of elementary particles

DO.204.2 Theory of hadronic matter in extreme conditions and quark-gluon plasma

Discipline facultative:

DFC.106 Volunteering

DFC.112 Physics of mesoscopic systems

DFC.113 Advanced methods for parallel computing

DFC.114 Volunteering

DFC.115 Data science and computational electronic structure methods for soft-end bio-matter

DFC.205 Computational approaches in high-energy physics

DFC.206 Volunteering

DFC.211 Extensions of the standard model of elementary particles

DFC.212 Introduction to string theory

DFC.213 Volunteering

Academic year 2025/2026 DI.101 Quantum Statistical Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Quantum Statistical Physics
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bib	oliography	30
Research in library, study of electronic resources, field research			30		
Preparation for practicals/tutorials/projects/reports/homework			15		
Tutorat					0
Other activities					58
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems. R7. The student/graduate communicates effectively through scientific reports, presentations, and publications.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains. R7. Prepares clear scientific communication and documentation.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.
	R7. Uses diverse information sources and digital tools responsibly.

7.1 Lecture [chapters]	Teaching techniques	Observations
Quantum states. Microstates and macrostates of a	Systematic exposition -	2 Hours
quantum system. Statistical (density) operator:	lecture. Examples	
definition and properties. Time evolution.		
Quantum entropy. Boltzmann-von Neumann	Systematic exposition -	4 Hours
formula. Physical interpretation. Principle of	lecture. Examples	
maximum entropy. Equilibrium distributions.		
Statistical operator in equilibrium. Boltzmann Gibbs formula.		
Partition functions: definition and properties.	Systematic exposition -	4 Hours
Entropy in thermodynamic equilibrium, natural	lecture. Examples	
variables. Equilibrium statistical ensembles.		
Ensemble averages. Canonical, grand-canonical		
and microcanonical ensembles		
The indistinguishability of quantum particles.	Systematic exposition -	6 Hours
Occupations number representation. Pauli principle.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent fermions. Fermi-Dirac statistics.	lecture. Examples	
Applications.		
Grand-canonical partition functions for systems of	Systematic exposition -	2 Hours
independent bosons. Bose-Einstein statistics.	lecture. Examples	
Applications.		
Equilibrium radiation, Planck law. The black-body		4 Hours
radiation. Applications.		
Quantum liquids. Helium three. Helium four and		4 Hours
Bose-Einstein condensation.		

References:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică
- 3. K. Huang, Statistical Mechanics, John Wiley and sons, 1987
- 4. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017.

7.2 Tutorials	Teaching techniques	Observations
The statistical thermodynamics of the ideal	Problem solving	4 Hours
fermionic gas. White dwarf stars. Neutron stars.		
The statistical thermodynamics of the ideal bosonic	Problem solving	4 Hours
gas.		
Statistical mechanics of lattice vibrations. Phonons.	Problem solving	2 Hours
Debye model.		
Heisenberg model and applications.	Problem solving	4 Hours

References:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. D. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, IOP 1999.
- 3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	Clarity and coherence of	Written test and oral	60%
	exposition	examination	
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	Ability to use specific problem	Homeworks	40%
	solving methods		
Minimal	At least 50 of exam score and of homeworks.		
requirements			
for passing			
the exam			

Practicals/Tutorials/Project instructor(s), Date, Teacher's

> name and signature, name and signature

13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

Academic year 2025/2026

DI.102 Group Theory and Applications in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Group Theory and Applications in Physics
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Cristian Iorga
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time for study					
Learning by using one's own course notes, manuals, lecture notes, bibliography				20	
Research in library, study of electronic resources, field research				20	
Preparation for practicals/tutorials/projects/reports/homework				25	
Tutorat				0	
Other activities				57	
3.7. Total hours of individual study				122	
3.8. Total hours per semester				150	
3.9. ECTS				6	

4. Prerequisites (if necessary)

	· • • • • • • • • • • • • • • • • • • •
4.1. curriculum	Linear algebra, Quantum mechanics
4.2. competences	Knowledge about: mechanics, atomic physics, solid state physics, nuclear physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R4. The student/graduate solves problems in theoretical and computational physics with modern tools.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R4. Solves theoretical and applied problems using specialized software.
Responsibility and autonomy	R1. Presents scientific work clearly to both expert and general audiences. R2. Manages independent and collaborative research projects effectively. R4. Organizes and interprets data rigorously and efficiently.

7. Contents

	7.1 Lecture [chapters]	Teaching techniques	Observations
--	------------------------	---------------------	--------------

Introductory notions:symmetries of a physical system, the role of group theory in physics, groups	Systematic exposition - lecture. Examples	1 Hour
clasification.		
Group axioms, group multiplication table,	Systematic exposition -	1 Hour
subgroups, mappings of groups, direct product of	lecture. Examples	
groups.		
Conjugate elements, equivalence classes, invariant	Systematic exposition -	2 Hours
subgroups, cosets, quotient group	lecture. Examples	
Matrix representation of a group, equivalent	Systematic exposition -	2 Hours
representations, irreducible representation. Schur;s	lecture. Examples	
lemma.		
Orthogonality relations for irreducible	Systematic exposition -	2 Hours
representations of a finite group, inequivalent	lecture. Examples	
representations for finite groups, characters and		
their orthogonality relations, character table.		
Group theory and quantum mechanics. From	Systematic exposition -	2 Hours
degeneracy to group representations:classification	lecture. Examples	
of the eigenvalues and of the eigenstates of energy		
according to the irreducible representations of		
symmetry group. Applications.		
Discrete symmetries. Rotation group in quantum	Systematic exposition -	4 Hours
mechanics. Tensor operators. Wigner-Eckart	lecture. Examples	
theorem. Aplications in atomic and nuclear physics.		

- 1. J.F. Corwell, Group theory in physics. An Introduction. Academic Press, 1997.
- 2. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 3. W.K. Tung, Group theory in physics, World Scientific, 1985

7.2 Tutorials	Teaching techniques	Observations
Basic group theory. Aplications.	Problem solving	2 Hours
Discrete groups representations.	Problem solving	2 Hours
Permutation groups. Dihedral groups.	Problem solving	2 Hours
Group theory and harmonic motion.	Problem solving	2 Hours
Unitary representations for rotations, Wigner	Problem solving	4 Hours
matrices, Spherical tensors.		
Discrete translations.	Problem solving	2 Hours

References:

- 1. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 2. W.K. Tung, Group theory in physics: Problems and solutions, World Scientific, 1991
- 3. S. Sternberg, Group theory and physics, Cambridge University Press, 1994

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

9. Assessing			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of exposition	Written test/oral examination	60%
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	- Ability to use specific problem	Homeworks	40%
	solving methods		

Minimal	At least 50% of exam score.
requirements	
for passing	
the exam	

 $Practicals/Tutorials/Project\ instructor(s),$ Date, Teacher's

name and signature name and signature, 13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Cristian Iorga

Date of approval Head of department

name and signature

Lect. dr. Rozana ZUS 15.07.2025

Academic year 2025/2026 DI.103 Ethics and academic integrity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Matter Structure, Atmospheric and Earth Physics, Astrophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Ethics and academic integrity		
2.2. Teacher	lector dr.Sanda Voinea		
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7.Classification		

3. Total estimated time

3. Total estimated time		1	1		
3.1. Hours per week	1	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	14	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own	course notes	s, manuals, lectur	e notes,	bibliography	31
Research in library, study of e	lectronic re	sources, field rese	earch		15
Preparation for practicals/tutorials/projects/reports/homework				15	
Tutorat					0
Other activities					0
3.7. Total hours of individual study				61	
3.8. Total hours per semester					75
3.9. ECTS					3

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R8. The student/graduate applies ethical standards, assumes responsibility, and demonstrates autonomy in research.
Skills	R8. Applies good research practices and maintains academic integrity.
Responsibility and autonomy	R8. Shows autonomy, responsibility, and ethical awareness in professional activities.

7. Contents

7. Contents		
7.1 Lecture [chapters]	Teaching techniques	Observations
Moral evaluation frameworks. Fundamental concepts of ethics.	Lecture. Example.	2 Hours
	Discussion.	
Ethics and the scientific community.		
Criteria for moral evaluation: consequences / intentions,		
virtues.		

Academic integrity: institutional tools.	Lecture. Discussion.	Example.	2 Hours
Codes and ethics commissions.			
Principles of research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Challenges and dilemmas in research ethics	Lecture.	Example.	2 Hours
	Discussion.		
Publication ethics: authorship and co-authorship	Lecture.	Example.	2 Hours
	Discussion.		
Access to resources (fairness and equity in academic	Lecture.	Example.	2 Hours
organizations and research teams)	Discussion.		
Deontology of teamwork in scientific research	Lecture.	Example.	2 Hours
	Discussion.		

Julian Baggini, Peter S. Fosl, A Compendium of Ethical Concepts and Methods, Blackwell Publishing, 2014.

Blaxter, L, Hugh, C. Tight, L. How to research, New York, 2006

Angelo Corlett. "The Role of Philosophy in Academic Ethics", Journal of Academic Ethics, Volume 12, Issue 1, pp 1–14, 2014

Codul de etică al Universității din București https://unibuc.ro/wp-content/uploads/2021/01/CODUL-DE-ETICA-SI-DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf

Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)

Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.

Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002

Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.

James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.

Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dilemma: Talking about Plagiarism and Academic Integrity in the Digital Age", English Journal 100.6, pp. 47–53, 2011

Anthony Weston, A Practical Companion to Ethics, Oxford University Press, 2011

Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006

Bretag, T. (ed), Handbook of Academic Integrity, Singapore: Springer, 2016

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical implications for impact. Not only abstract arguments and positions are discussed and evaluated, but also issues related to the ethical infrastructure of academic organizations or moral decision-making tools that can be used by students in their academic work and future professional life

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight î	ìn
			final mark	

Minimal	Achieving the grade of ADMISSION in the essay, attending at least 50% of the courses
requirements	
for passing	
the exam	

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
13.07.2025 lector dr.Sanda Voinea

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Sanda VOINEA

Academic year 2025/2026

DI.107 Relativistic quantum mechanics and Quantum electrodynamics

1. Study program

v i o	
1.1. University	University of Bucharest
1.2. Faculty Faculty of Physics	
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Relativistic quantum mechanics and Quantum electrodynamics		
2.2. Teacher	Conf. Madalina Boca		
2.3. Tutorials/Practicals instructor(s)	Lector Virgil V. Baran		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3. Iotal Commatea mile		I	I		I
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes.	, manuals, lectur	e notes, bibl	iography	40
Research in library, study of electronic resources, field research				30	
Preparation for practicals/tutorials/projects/reports/homework					24
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				94	
3.8. Total hours per semester				150	
3.9. ECTS				6	

4. Prerequisites (if necessary)

4.1. curriculum	Quantum Mechanics, Electrodynamics and theory of relativity, Equations of mathematical physics
4.2. competences	Solving of problems in quantum mechanics, higher mathematics

5. Conditions/Infrastructure (if necessary)

	· · · · · · · · · · · · · · · · · · ·
5.1. for lecture	Room with video projector, internet connection
5.2. for tutorials/practicals	Room with video projector, internet connection

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems. R9. The student/graduate contributes to teamwork and interdisciplinary projects, managing resources efficiently.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains. R9. Collaborates across disciplines and manages research workflows.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.
	R9. Contributes actively to research teams and professional communities.

7.1 Lecture [chapters]	Teaching techniques	Observations
Dirac equation. Bispinors. Dirac matrices. The	Systematic exposition -	4 Hours
Pauli theorem. The relativistic invariance of Dirac	lecture. Examples	
equation.		
Lorentz transformations; the transformation of the	Systematic exposition -	4 Hours
solutions of Dirac equation. Continuous	lecture. Examples	
transformations (rotations, special Lorentz		
transformations) and discrete transformations		
(spatial and temporal inversion)		
Basic solutions of Dirac equation for the free	Systematic exposition -	4 Hours
particle. Plane waves. Positive and negative	lecture. Examples	
frequencies. Spin 1/2. Projection operators. The		
helicity.		
Charge conjugation, Transformation of	Systematic exposition -	2 Hours
characteristic quantities to charge conjugation. The	lecture. Examples	
reinterpretation of the negative frequency states.		
The positron.		
The scalar field, the Klein-Gordon equation;	Systematic exposition -	3 Hours
fundamental solutions, quantization of the real	lecture. Examples	
scalar field. Creation and annihilation operators. The		
covariant form of the commutation relations. The		
normal and chronological product		
The electron-positron field. The Dirac Lagrange and	Systematic exposition -	2 Hours
Hamilton functions, The Dirac equation.	lecture. Examples	
Quantization of the electron-positron field. The		
electromagnetic interaction and the gauge		
invariance.		
The electromagnetic field. The covariant form of the	Systematic exposition -	2 Hours
electromagnetism laws. The Lagrange function of	lecture. Examples	
the electromagnetic field. Quantization of the		
electromagnetic field. Gupta-Bleuler conditions.		
Interacting fields. The interaction Hamiltonian în	Systematic exposition -	4 Hours
QED. The S matrix. Series expansion on the S	lecture. Examples	
matrix. Expansion of the S matrix. Wick theorem,		
Feynman diagrams and rules.		
Cross sections, examples for fundamental processes	Systematic exposition -	3 Hours
	lecture. Examples	

- 1. M. Maggiore, A modern introduction to quantum field theory, Oxford University Press, 2008
- 2. L Maiani, O. Benhar, Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields, Taylor and Francis 2024
- 3. U. Jentschura, G. Adkins, Quantum electrodynamics: atoms, lasers and gravity, World Scientific 2022
- 4. F. Schwabl, Advanced Quantum Mechanics, Springer Verlag, 2005
- 5. A. Wachter, Relativistic Quantum Mechanics, Springer, 2011
- 6. F. Mandl, G. Shaw, Quantum Field Theory, John Wiley and Sons, 2010
- 7. M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory, Addison Wesley, 1996
- 8. W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, 2009
- 9. J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons, Springer Verlag, 1980
- 10. A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics, Interscience, 1965

7.2 Tutorials	Teaching techniques	Observations
Review of some elements of Group theory and theory of relativity	Lecture. Problem solving.	2 Hours
Properties of the Dirac matrices	Lecture. Problem solving.	2 Hours
Bilinear covariants of Dirac bispinors.	Lecture. Problem solving.	2 Hours
Representations of Dirac matrices. Calculation of		
the traces.		
Completeness and orthogonality of the plane waves	Lecture. Problem solving.	2 Hours
solutions of the Dirac equation		
Relativistic electron in constant magnetic field.	Lecture. Problem solving.	2 Hours
Solutions of the 1D Dirac equation	Lecture. Problem solving.	2 Hours
Complex scalar field and charge conservation	Lecture. Problem solving.	2 Hours
The Feynman propagator for the Klein Gordon and	Lecture. Problem solving.	6 Hours
Dirac equations		
The Feynman propagator for the electromagnetic	Lecture. Problem solving.	2 Hours
field		
Calculation of cross section for some fundamental	Lecture. Problem solving.	6 Hours
processes		

References:

- 1. M. Maggiore, A modern introduction to quantum field theory, Oxford University Press, 2008
- 2. L Maiani, O. Benhar, Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields, Taylor and Francis, 2024
- 3. U. Jentschura, G. Adkins, Quantum electrodynamics: atoms, lasers and gravity, World Scientific 2022
- 4. F. Schwabl, Advanced Quantum Mechanics, Springer Verlag, 2005
- 5. A. Wachter, Relativistic Quantum Mechanics, Springer, 2011
- 6. F. Mandl, G. Shaw, Quantum Field Theory, John Wiley and Sons, 2010
- 7. M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory, Addison Wesley, 1996
- 8. W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, 2009
- 9. J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons, Springer Verlag, 1980
- 10. A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics, Interscience, 1965

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity and coherence of exposition Correct use of the methods/ physical models		70%
	The ability to give specific examples		

Tutorial	Ability to use specific problem solving methods	30%
Minimal	Requirements for mark 5 (10 points scale):	
requirement	- At least 50% of exam score and of homework.	
for passing	g	
the exam	Requirements for mark 10 (10 points scale):	
	- At least 95% of exam score and of homework.	

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Madalina Boca Lector Virgil V. Baran

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.108 Theory of Nuclear systems and photonuclear reactions

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Theory of Nuclear systems and photonuclear reactions
2.2. Teacher	Lect. Dr. Virgil V. Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study	1		-	
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	25
Research in library, study of el	lectronic res	sources, field res	earch		30
Preparation for practicals/tutorials/projects/reports/homework				35	
Tutorat				0	
Other activities					18
3.7. Total hours of individual study			108		
3.8. Total hours per semester				150	
3.9. ECTS				6	

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

fundamental and advanced laws of physics and their
plies mathematical models to describe physical systems.
uses appropriate analytical, numerical, and statistical
ns in theoretical and computational physics with modern
owledge across disciplines to address complex physical
s effectively through scientific reports, presentations, and

Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.		
	R2. Applies mathematical methods for modeling and solving physics problems.		
	R3. Employs computational and numerical techniques for analysis and simulation.		
	R4. Solves theoretical and applied problems using specialized software.		
	R6. Connects physics with related scientific and engineering domains.		
	R7. Prepares clear scientific communication and documentation.		
Responsibility	R1. Presents scientific work clearly to both expert and general audiences.		
and autonomy	R2. Manages independent and collaborative research projects effectively.		
	R3. Takes responsibility for applying suitable research methods.		
	R4. Organizes and interprets data rigorously and efficiently.		
	R6. Integrates interdisciplinary approaches in research tasks.		
	R7. Uses diverse information sources and digital tools responsibly.		

7.1 Lecture [chapters]	Teaching techniques	Observations
Fundamental properties of nucleon-nucleon	Systematic exposition -	4 Hours
interaction. The origin of nuclear interactions,	lecture. Examples	
properties of the nuclear forces as derived from		
experimental observations. The nuclear matter,		
saturation properties. Observables of interest in		
nuclear physics		
Phenomenological nuclear models: Bohr-Mottelson	Systematic exposition -	6 Hours
model, interacting bosons models.	lecture. Examples	
Microscopic nuclear models: shell model and its	Systematic exposition -	4 Hours
extensions.	lecture. Examples	
Many-body methods for describing the quantum	Systematic exposition -	6 Hours
states of nuclear systems: Hartree-Fock, Bardeen-	lecture. Examples	
Cooper -Schrieffer, Time-dependent Hartree-Fock,		
Random-Phase Approximation		
Electromagnetic transitions in nuclear physics:	Systematic exposition -	4 Hours
the interaction between electromagnetic field and	lecture. Examples	
nucleus. Multipole electromagnetic transitions,		
reduced transition probabilities. One particle matrix		
elements in a spherical basis set, Weisskopf units.		
The giant dipole resonance and the cross section of		
absorption of dipole radiation. Sum- rules.		
Collective excitations in atomic nuclei.		
Fundamentals of nuclear astrophysics: supernova	Systematic exposition -	4 Hours
explosion, properties of neutron stars, stellar	lecture. Examples	
nucleosynthesis, elements abundance. Theoretical		
basis of nuclear astronomy and cosmology.		

References:

- 1. J.L. Basdevant, J Rich, M. Spiro, Fundamentals in nuclear physics, Springer, 2005.
- 2. W. Greiner, J.A. Maruhn, Nuclear Models, Springer, 1996.
- 3. P.Ring and P. Schuck, Nuclear many body problem, Springer, 2004.

7.2 Tutorials	Teaching techniques	Observations
Fermi gas model for nuclear matter.	Problem solving	1 Hour
Pauli quantization for quadrupole degrees of	Problem solving	3 Hours
freedom. Collective states of a deformed nucleus.		
Group theoretical methods for low-lying states.		
Single particle properties in various potential wells	Problem solving	1 Hour
for nuclear systems.		
Many-body calculations of nuclear properties.	Problem solving	4 Hours

Photonuclear reaction. Electromagnetic transitions.	Problem solving	3 Hours
Properties of neutrons stars. Supernova explosions.	Problem solving	2 Hours

- 1. P.A. Martin, F. Rothen, Many-body problems and quantum field theory, Springer, 2002
- 2. J.Eisenberg and W. Greiner, Nuclear models, vol. 1,2, 3

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	- Clarity and coherence of exposition examination - Correct use of the methods/ physical models - The ability to give specific examples		60%
Tutorial	- Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50% of exam score and of homeworks.		,

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,

13.07.2025 Lect. Dr. Virgil V. Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.201 Introduction to quantum theory of fields

1. Study program

11 Staay program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Introduction to quantum theory of fields
2.2. Teacher	Lect. dr. Roxana Zus
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Stefan-Alexandru Ghinescu
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

5. Iotal estillated tille			I -		
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	25
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework					35
Tutorat				0	
Other activities				54	
3.7. Total hours of individual study				144	
3.8. Total hours per semester				200	
3.9. ECTS				8	

4. Prerequisites (if necessary)

_	• • • • • • • • • • • • • • • • • • • •
4.1. curriculum	Quantum mechanics, Electrodynamics, Theory of relativity
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Fundamental properties of elementary	Systematic exposition -	2 Hours
particles. Relevant experimental facts. Orders	lecture. Examples	
of magnitude in elementary particle physics,		
dimensional analysis.		
The Lorentz (LG) and Poincare (PG) groups:	Systematic exposition -	4 Hours
definition and basic properties. Generators and	lecture. Examples	
Lie algebra of the Lorentz and Poincare		
groups. Finite irreducible representations of		
LG and classification of classical fields. Scalar,		
vectorial, spinorial fields.		
Variational principle for classical fields and	Systematic exposition -	2 Hours
Noether theorem. Dynamical invariants.	lecture. Examples	
Free fields: Klein-Gordon field, Weyl field, Dirac	Systematic exposition -	8 Hours
field, Majorana field, Maxwell field, Proca Field.	lecture. Examples	
Frequency decomposition of the fields. Spin and		
charge.		
Quantization of the fundamental fields, elementary	Systematic exposition -	4 Hours
particles, commutation relations, spin-statistics	lecture. Examples	
theorem.	_	
Local gauge invariance and interaction.	Systematic exposition -	4 Hours
Spontaneous breaking of symmetries. Goldstone	lecture. Examples	
model. Higgs mechanism.		
Interacting quantum fields. Feynman diagrams.	Systematic exposition -	4 Hours
Fundamentals of renormalization	lecture. Examples	

References:

- 1. M. Maggiore, A modern introduction to Quantum Field Theory, Oxford University Press, 2005.
- 2. T. Morii, C. S. Lim, S. N. Mukherjee, The Physics of the Standard Model and Beyond, World Scientific, 2004.
- 3. David Tong, Lectures on Quantum Field Theory, University of Cambridge, 2007, https://www.damtp.cam.ac.uk/user/tong/qft.html
- 4. M.E. Peskin, D.V. Schroeder An Introduction to Quantum Field Theory, Advanced Book Program, Addison-Wesley Publishing Company, 1995.
- 5. N.N. Bogoliubov, D.V. Shirkov, Introduction to The Theory of Quantized Fields, John Wiley and Sons, 1980
- 6. S. Weinberg, The quantum theory of fields, Vol. I and Vol. II Cambridge University Press, 2005.
- 7. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, Perg. Press, 1989.
- 8. T.D. Lee, Particle Physics and Introduction to Field Theory, Hardwood Academic, 1981.
- 9. A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003."
- 10. R. D. Klauber, Student Friendly Quantum Field Theory: Volume 1: Basic Principles and Quantum Electrodynamics, 2nd edition, Sandtrove Press, 2013
- 11. R. D. Klauber, Student Friendly Quantum Field Theory: Volume 2: The Standard Model, 2nd edition, Sandtrove Press, 2021

7.2 Tutorials	Teaching techniques	Observations
Lorentz Group algebra. Poincare group algebra.	Problem solving	4 Hours
Pauli-Lubansky four-vectors. Casimir operators.		
Dynamical invariants for classical fields.	Problem solving	4 Hours
Frequency decompositions.		
Commutation functions for free fields. Causality.	Problem solving	3 Hours

Discrete symmetries of physical fields.	Problem solving	3 Hours
Models for spontaneous global symmetry breaking.	Problem solving	4 Hours
Goldstone theorem.		
Models for Higgs mechanism.	Problem solving	4 Hours
Perturbative methods for interacting quantum	Problem solving	6 Hours
fields. Renormalization.		

- 1. Voja Radovanovich, Problem book in quantum field theory, Springer, 2005
- 2. C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980
- 3. M. Kaku, Quantum Field Theory: A Modern Introduction, Oxford University Press, 1993
- 4. F. Mandl and G. Shaw, Quantum Field Theory, New York, 1999

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of exposition	Written test and oral	60%
	- Correct use of the methods/physical models	examination	
	- The ability to give specific examples		
Practical	- Ability to use specific problem solving methods	Homeworks	40%
Minimal	Requirements for mark 5 (10 points scale):		
requirements	- At least 50% of exam score and of homework.		
for passing			
the exam	Requirements for mark 10 (10 points scale):		
	- At least 95% of exam score and of homework.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. dr. Roxana Zus Lect. dr. Stefan-Alexandru Ghinescu

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DI.207 Introduction to gravity theory and cosmology

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title Introduction to gravity theory and cosmology		
2.2. Teacher	R. Slobodeanu	
2.3. Tutorials/Practicals instructor(s)	M. Marciu	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification	

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	1/0/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	14/0/0
Distribution of estimated time	for study		1		
Learning by using one's own o	course notes,	manuals, lectur	e notes, bibl	iography	42
Research in library, study of electronic resources, field research				21	
Preparation for practicals/tutorials/projects/reports/homework			20		
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				83	
3.8. Total hours per semester			125		
3.9. ECTS				5	

4. Prerequisites (if necessary)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
4.1. curriculum	Real and Complex Analysis, Algebra, Differential Equations, Equations of Mathematical Physics,	
	Classical Mechanics, Special Relativity	
4.2. competences	Computational skills in differential and integral calculus, partial differential equations, special	
	functions. Familiarity with the formalism of classical mechanics; the principle of least action;	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their
	applications.
	R2. The student/graduate derives and applies mathematical models to describe physical systems.
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical
	methods.
	R4. The student/graduate solves problems in theoretical and computational physics with modern
	tools.
	R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.
	R6. The student/graduate integrates knowledge across disciplines to address complex physical
	problems.

Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.
	R2. Applies mathematical methods for modeling and solving physics problems.
	R3. Employs computational and numerical techniques for analysis and simulation.
	R4. Solves theoretical and applied problems using specialized software.
	R5. Evaluates scientific literature and data with critical judgment.
	R6. Connects physics with related scientific and engineering domains.
Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
Responsibility and autonomy	R1. Presents scientific work clearly to both expert and general audiences. R2. Manages independent and collaborative research projects effectively.
1 1	, , ,
1 1	R2. Manages independent and collaborative research projects effectively.
1 1	R2. Manages independent and collaborative research projects effectively. R3. Takes responsibility for applying suitable research methods.
1 1	R2. Manages independent and collaborative research projects effectively. R3. Takes responsibility for applying suitable research methods. R4. Organizes and interprets data rigorously and efficiently.

7.1 Lecture [chapters]	Teaching techniques		Observations	
The principles of special relativity and the Minkowski space	Systematic	exposition	4 Hours	
	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Manifolds and differential forms	Systematic	exposition	4 Hours	
	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Curvature, parallel transport and covariant derivatives, geodesic	Systematic	exposition	4 Hours	
equations	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Einstein's equations and the variational formulation of general	Systematic	exposition	4 Hours	
relativity. Scalar fields in curved space-time	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Spherically symmetric solutions (Schwarzschild spacetime, black	Systematic	exposition	4 Hours	
holes and neutron stars)	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Gravitational waves	Systematic	exposition	4 Hours	
	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	3		
Elements of modern cosmology: the dark energy and dark matter	Systematic	exposition	4 Hours	
problems	- lecture.	Heuristic		
	conversation.	Critical		
	analysis. Examples	:		

References:

dffd

7.2 Tutorials	Teaching techniques	Observations
Geometry in a 4-dimensional space-time: vectors, dual vectors	Problem solving. Guided	2 Hours
and tensors. Basic properties of the Lorentz transformations.	work. Case study. Examples	
Description of the Lorentz and Poincare groups. Einstein's		
equivalence principle.		
The space-time metric; the Levi-Civita connection; derivation of	Problem solving. Guided	2 Hours
the geodesic equations. The Riemann curvature tensor and the	work. Case study. Examples	
non-commutativity property of the covariant derivatives.		

Properties of the Riemann curvature tensor: the Bianchi identity. The Ricci, Weyl and Einstein tensors. Symmetries and Killing	Problem solving. Guided work. Case study. Examples	2 Hours
vectors for a specific metric. Applications.	work. Case study. Examples	
Einstein-Hilbert action and the principle of least action.	Problem solving. Guided	2 Hours
Applications.	work. Case study. Examples	
Linearization of the Einstein's field equations. The gravitational	Problem solving. Guided	2 Hours
wave equation. Plane wave solutions. Applications.	work. Case study. Examples	
Tolman-Oppenheimer-Volkoff equations. Applications.	Problem solving. Guided	2 Hours
	work. Case study. Examples	
The Friedmann's equations. Applications. Derivation of the	Problem solving. Guided	2 Hours
Klein-Gordon equations for scalar fields in curved space-time.	work. Case study. Examples	
The modified Friedmann relations		

- 1. M. Blennow, T. Ohlsson, 300 Problems in Special and General Relativity, Cambridge University Press 2021.
- 2. C. G. Bohmer, Introduction to General Relativity and Cosmology, World Scientific, 2016
- 3. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Physics Reports 692 (2017)
- 4. T. Padmanabhan, Cosmology and astrophysics through problems, Cambridge University press, 1996

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences and abilities which are fundamental for a graduate student in the field of theoretical physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania, the European Union, or the United States of America. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

9 Assessment

9. Assessmo			TTT 1 1 . A
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 coherence and clarity of exposition correct use of equations, mathematical methods, physical models and theories ability to indicate and analyse specific examples 	oral presentation	50%
Tutorial	ability to use specific problem solving methods. Ability to analyse the results	Homeworks. Seminar activity	30%
Practical	ability to use Wolfram mathematica for computing various geometric tensors	Project assignement	20%
Minimal requirements for passing the exam	At least 50% of exam score and 50% of total score.		

Date, Teacher's

name and signature,

13.07.2025 R. Slobodeanu

ture, name and signature

M. Marciu

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Rozana ZUS

Practicals/Tutorials/Project instructor(s),

Academic year 2025/2026 DI.208 Research activity (traineeship – 180 hours)

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Research activity (traineeship – 180 hours)
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3.1. Hours per week	8	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/8/0
3.4. Total hours per semester	80	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/80/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes,	bibliography	210
Research in library, study of electronic resources, field research			105		
Preparation for practicals/tutorials/projects/reports/homework			105		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			420		
3.8. Total hours per semester			500		
3.9. ECTS			20		

4. Prerequisites (if necessary)

	`	• /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.		
	R6. The student/graduate integrates knowledge across disciplines to address complex physical		
	problems.		
	R7. The student/graduate communicates effectively through scientific reports, presentations, and		
	publications.		
	R8. The student/graduate applies ethical standards, assumes responsibility, and demonstrates		
	autonomy in research.		
	R9. The student/graduate contributes to teamwork and interdisciplinary projects, managing		
	resources efficiently.		
Skills	R5. Evaluates scientific literature and data with critical judgment.		
	R6. Connects physics with related scientific and engineering domains.		
	R7. Prepares clear scientific communication and documentation.		
	R8. Applies good research practices and maintains academic integrity.		
	R9. Collaborates across disciplines and manages research workflows.		

Responsibility	R5. Performs independent investigations with critical awareness.
and autonomy	R6. Integrates interdisciplinary approaches in research tasks.
	R7. Uses diverse information sources and digital tools responsibly.
	R8. Shows autonomy, responsibility, and ethical awareness in professional activities.
	R9. Contributes actively to research teams and professional communities.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

în

professional as	sociations and employers (in the fi	ield of the study program	
9. Assessm	ent		
Activity type	Assessment criteria	Assessment methods	Weight final mark
Minimal requirements for passing			
the exam			
Date,	Teacher's name and signature,	Practicals/Tutorials/Project instructor(s) name and signature	,
13.07.2025			
Date of approv	val	Head of department name and signature	
15.07.2025		Lect. dr. Rozana ZUS	

Academic year 2025/2026

DI.209 Finalization of master thesis (90 hours / 4 weeks)

1. Study program

University of Bucharest
Faculty of Physics
Theoretical Physics, Mathematics, Optics, Plasma and Lasers
Fizică/Physics
Master
Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Finalization of master thesis (90 hours / 4 weeks)		
2.2. Teacher			
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification		

3. Total estimated time

3. Iutai estilliateu tille					
3.1. Hours per week	4	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/4/0
3.4. Total hours per semester	40	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/40/0
Distribution of estimated time	for study		u.		
Learning by using one's own o	course notes	, manuals, lectur	e notes, bib	liography	43
Research in library, study of electronic resources, field research				21	
Preparation for practicals/tutorials/projects/reports/homework					21
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			85		
3.8. Total hours per semester			125		
3.9. ECTS				5	

4. Prerequisites (if necessary)

4. Trerequisites (if necessary)				
4.1. curriculum				
4.2. competences				

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	 R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions. R7. The student/graduate communicates effectively through scientific reports, presentations, and publications. R8. The student/graduate applies ethical standards, assumes responsibility, and demonstrates autonomy in research. R9. The student/graduate contributes to teamwork and interdisciplinary projects, managing resources efficiently.
Skills	R5. Evaluates scientific literature and data with critical judgment. R7. Prepares clear scientific communication and documentation. R8. Applies good research practices and maintains academic integrity. R9. Collaborates across disciplines and manages research workflows.

Responsibility	R5. Performs independent investigations with critical awareness.
and autonomy	R7. Uses diverse information sources and digital tools responsibly.
	R8. Shows autonomy, responsibility, and ethical awareness in professional activities.
	R9. Contributes actively to research teams and professional communities.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

în

9. Assessment						
Assessment criteria	Assessment methods	Weight				
		final mark				
name and signature,	name and signature					
a1	Head of department					
ш	-					
	-					
		Assessment criteria Assessment methods Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature				

Academic year 2025/2026 DI.210 Public defense of master thesis

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Public defense of master thesis
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation 0 2.7.Classification

3. Total estimated time

2.1 Train Communication		1007		22 5 11 5 1 1 5 1	0.10.10
3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own course notes, manuals, lecture notes, bibliography					125
Research in library, study of electronic resources, field research				63	
Preparation for practicals/tutorials/projects/reports/homework				62	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			250		
3.8. Total hours per semester			250		
3.9. ECTS				10	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

or conditions, that uses detaile (it necessary)		
5.1. for lecture		
5.2. for tutorials/practicals		

6. Learning outcomes

Knowledge	R7. The student/graduate communicates effectively through scientific reports, presentations, and publications.		
	R8. The student/graduate applies ethical standards, assumes responsibility, and demonstra		
	autonomy in research.		
	R9. The student/graduate contributes to teamwork and interdisciplinary projects, managing		
	resources efficiently.		
Skills	R7. Prepares clear scientific communication and documentation.		
	R8. Applies good research practices and maintains academic integrity.		
	R9. Collaborates across disciplines and manages research workflows.		
Responsibility	R7. Uses diverse information sources and digital tools responsibly.		
and autonomy	R8. Shows autonomy, responsibility, and ethical awareness in professional activities.		
	R9. Contributes actively to research teams and professional communities.		

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessmo	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal			
requirements			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025

for passing the exam

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025 L

Academic year 2025/2026

DO.104.1 Nonlinear dynamics, chaos, physics of complex systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Nonlinear dynamics, chaos, physics of complex systems		
2.2. Teacher	Prof. Dr. Virgil Baran		
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own c	course notes	, manuals, lectur	e notes, bibl	iography	30
Research in library, study of electronic resources, field research					30
Preparation for practicals/tutorials/projects/reports/homework					30
Tutorat					0
Other activities					29
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS				7	

4. Prerequisites (if necessary)

4.1. curriculum	Analytical mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and data
	processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	Scientific computing laboratory

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Fluid dynamics and turbulence. Historical	Systematic exposition -	2 Hours
framework and physico-mathematical foundations.	lecture. Examples	
The emergence of turbulence and the theory of	Systematic exposition -	4 Hours
dynamic systems. Presentation of the logistics	lecture. Examples	
application. Period doubling and the road to chaos.	_	
Lyapunov exponent for discrete systems.		
Feigenbaum numbers. Presentation of the tent and		
Henon maps.		
Presentation of Navier-Stokes equations and shell	Systematic exposition -	6 Hours
models (especially Gledzer-Ohkitani-Yamada).	lecture. Examples	
Lyapunov exponent for continuous systems. The		
study of energy conservation and helicity.		
Presentation of Lorenz equations. Sensitivity to	Systematic exposition -	4 Hours
initial conditions. Strange attractors. The Rössler	lecture. Examples	
system.		
Presentation of Runge-Kutta numerical methods	Systematic exposition -	4 Hours
(explicit and implicit). Volume conservation in	lecture. Examples	
phase space.		
Presentation of the sandpile model. Self-organized	Systematic exposition -	4 Hours
criticality. Fractal distributions. Applications in	lecture. Examples	
economics, sociology, astrophysics.		
Presentation of complex networks, especially	Systematic exposition -	4 Hours
topology, dynamics, and universality. Basic	lecture. Examples	
principles of economics.		

References:

- 1. S.H. Strogatz, Nonlinear dynamics and chaos. With applications to physics, biology, and engineering, CRC Press, 2015.
- 2. M. Tabor, Chaos and integrability in nonlinear dynamics. An introduction, Wiley, 1989.
- 3. T. Bohr, M.H. Jensen, G. Paladin şi A. Vulpiani, Dynamical systems approach to turbulence, Cambridge University Press, 2005.
- 4. M. Aschwanden, Self-organized criticality in astrophysics. The statistics of nonlinear processes in universe, Springer, 2011.
- 5. S. Lynch, Dynamical systems with applications with Python, Birkhauser, 2018.
- 6. R. Hilborn, Chaos and nonlinear dynamics. An introduction for scientists and engineers, Oxford University Press, 2001.
- 7. P. Bak, How nature works. The science of self-organized criticality, Copernicus, 1999.
- 8. A.L. Barabasi, Network science, Cambridge University Press, 2016.
- 9. R.N. Mantegna şi H.E. Stanley, An introduction to econophysics. Correlations and complexity in finance, Cambridge University Press, 2007.

7.2 Tutorials	Teaching techniques	Observations
Computing Reynolds numbers.	Lecture. Problem solving	2 Hours
Deriving shell-like equations from the Navier-	Lecture. Problem solving	2 Hours
Stokes equation.		
Determination of the two Feigenbaum constants in	Supervised practical	2 Hours
the numerical study of the Henon application	activity	

Numerical solution of Lorenz equations. Runge-	Supervised practical	6 Hours
Kutta methods. Numerical algorithms for the	activity	
Lyapunov exponent.		
Numerical solution of equations that describe shell	Supervised practical	6 Hours
models. The Kolmogorov spectrum	activity	
Numerical study of the sandpile model and the	Supervised practical	6 Hours
Bak-Sneppen macroevolution model. Fractal	activity	
distributions. Self-organized criticality.		
The study of complex networks. The model of	Supervised practical	2 Hours
preferential attachment. Distributions of words in	activity	
Romanian.		
Financial markets. Hurst exponent calculation for	Supervised practical	2 Hours
time series describing the evolution of the	activity	
exchange rate of currencies. Solving the Black-		
Scholes equation.		

- 1. T. Bohr, M.H. Jensen, G. Paladin şi A. Vulpiani, Dynamical systems approach to turbulence, Cambridge University Press, 2005.
- 2. L. Biferale, Shell models of energy cascade in turbulence, Annual Review in Fluid Mechanics 35, 441 (2003).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
Tutorial	Ability to use specific problem- solving methods	Homework, Colloquium	40%
Minimal requirements for passing the exam	At least 50% of exam score and of homeworks.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.104.2 Special chapters of Mathematics

1. Study program

V 1 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Special chapters of Mathematics		
2.2. Teacher	Assoc.prof. dr. Radu Slobodeanu		
2.3. Tutorials/Practicals instructor(s)	Lecturer dr. Adrian Stoica		
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time for study					
Learning by using one's own c	course notes	, manuals, lectur	e notes, bibl	iography	60
Research in library, study of electronic resources, field research				30	
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			119		
3.8. Total hours per semester				175	
3.9. ECTS					7

4. Prerequisites (if necessary)

_	
4.1. curriculum	Algebra, Analysis, Quantum mechanics
4.2. competences	Knowledge about: mechanics, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Video projector

6. Learning outcomes

Knowledge	R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools.
Skills	R2. Applies mathematical methods for modeling and solving physics problems.
	R3. Employs computational and numerical techniques for analysis and simulation.
	R4. Solves theoretical and applied problems using specialized software.
Responsibility	R2. Manages independent and collaborative research projects effectively.
and autonomy	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.

7. Contents

7.1 Lecture [chapters] Teaching techniques Observations

Differentiable manifolds. Tangent spaces. Vector fields.	Systematic exposition -	6 Hours
Differential forms.	lecture. Examples	
Lie groups and Lie algebra.	Systematic exposition -	8 Hours
	lecture. Examples	
Fibre bundles. Applications	Systematic exposition -	6 Hours
	lecture. Examples	
Connection in a bundle. Parallel transport. Curvature.	Systematic exposition -	8 Hours
	lecture. Examples	

C.J.Isham, Modern Differential Geometry for Physicists, World Scientific, 2001

7.2 Tutorials	Teaching techniques	Observations
Fourier transform. Convolution product and its Fourier transform.	Problem solving	6 Hours
Fourier transform of generalized functions. Dirac's distribution.		
Complex functions: derivatives and contour integrals.	Problem solving	6 Hours
Taylor and Laurent series. Residues. Examples. Calculus of	Problem solving	4 Hours
definite integrals by using residue theorem		
Tensor calculus. Tensor products.	Problem solving	4 Hours
Orthogonal polynomials and special functions. Hypergeometric	Problem solving	4 Hours
polynomials. Legendre's polynomials and associated functions.		
Laguerre's polynomials. Hermite's polynomials		
Frames and orthonormal bases. The resolution of identity.	Problem solving	4 Hours
Systems of coherent states. Quantification based on systems of		
coherent states or frames.		

References:

G. Teschl, Mathematical Methods in Quantum Mechanics with Applications to Schrodinger Operators, AMS 2009 M. Stone and P. Goldbart, Mathematics for Physicists, Cambridge University Press 2009

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
Tutorial	- Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50% of exam score and of homeworks.		

Date, Teacher's

name and signature,

13.07.2025 Assoc.prof. dr. Radu Slobodeanu

Practicals/Tutorials/Project instructor(s),

name and signature

Lecturer dr. Adrian Stoica

Date of approval

15.07.2025

Head of department name and signature

Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.105.1 Artificial intelligence and machine learning in theoretical physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Artificial intelligence and machine learning in theoretical physics	
2.2. Teacher	Lect. dr. Mihai Marciu	
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Mihai Marciu	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification DC	

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study		II.	-	
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	60
Research in library, study of electronic resources, field research				30	
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities			0		
3.7. Total hours of individual study			119		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

4.1. curriculum	Parcurgerea cursurilor: Programarea calculatoarelor I (C/C++); Limba engleză pentru ştiințe;
4.2. competences	Abilitati de Fizică Computațională

5. Conditions/Infrastructure (if necessary)

	· · · · · · · · · · · · · · · · · · ·
5.1. for lecture	Sală cu dotări multimedia (videoproiector)
5.2. for tutorials/practicals	Sală de laborator cu infrastructură specifică

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their	
	applications.	
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical	
	methods.	
	R4. The student/graduate solves problems in theoretical and computational physics with modern tools.	
	R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.	
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.	
	R3. Employs computational and numerical techniques for analysis and simulation.	
	R4. Solves theoretical and applied problems using specialized software.	
	R6. Connects physics with related scientific and engineering domains.	

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Introducere in Python. Gramatica limbajului Python. Instructiuni	Expunere sistematica –	2 Hours
generale. Tipurile principale de date ale limbajului Python.	prelegere. Exemple.	
Tratarea exceptiilor in Python. Ierarhizarea exceptiilor.	Expunere sistematica –	2 Hours
Programarea functionala in Python. Implementarea expresiilor	prelegere. Exemple.	
regulate in Python.		
Concepte fundamentale in programarea orientata pe	Expunere sistematica –	2 Hours
obiecte. Notiunea de obiect si de clasa. Aplicatii in Python.	prelegere. Exemple.	
Introducere in programarea orientata pe obiecte in limbajul	Expunere sistematica –	2 Hours
Python.	prelegere. Exemple.	
Implementarea claselor in Python. Mostenirea obiectelor.	Expunere sistematica –	2 Hours
Polimorfism.	prelegere. Exemple.	
Definitia operatorilor. Serializarea obiectelor in Python. Iteratori.	Expunere sistematica –	4 Hours
	prelegere. Exemple.	
Utilizarea bazelor de date (SQL/NoSQL) in Python. Aplicatii	Expunere sistematica –	4 Hours
practice.	prelegere. Exemple.	
Programarea paralela in Python. Sincronizarea firelor de	Expunere sistematica –	6 Hours
executie. Sisteme multi-procesor.	prelegere. Exemple.	
Elemente de networking in Python. Utilizarea protocoalelor FTP	Expunere sistematica –	2 Hours
si HTTP.	prelegere. Exemple.	
Machine learning in Python. Prezentarea unor algoritmi specifici	Expunere sistematica –	2 Hours
utilizati in procesarea informatiilor.	prelegere. Exemple.	

References:

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition

7.3 Practicals	Teaching techniques	Observations
Scrierea programelor iterative in Python. Aplicatii numerice.	Activitate practică dirijată	2 Hours
Utilizarea listelor in Python. Tratarea exceptiilor. Aplicatii	Activitate practică dirijată	2 Hours
numerice.		
Utilizarea claselor in Python. Aplicatii numerice.	Activitate practică dirijată	2 Hours
Mostenirea obiectelor si polimorfism. Aplicatii numerice.	Activitate practică dirijată	2 Hours
Rezolvarea ecuatiilor si a sistemelor de ecuatii algebrice.	Activitate practică dirijată	2 Hours
utilizand Python. Aplicatii numerice.		
Derivarea numerica a functiilor utilizand Python. Aplicatii	Activitate practică dirijată	4 Hours
numerice.		
Derivarea si integrarea numerica a functiilor utilizand Python.	Activitate practică dirijată	4 Hours
Aplicatii numerice.		
Rezolvarea ecuatiilor si a sistemelor de ecuatii diferentiale	Activitate practică dirijată	4 Hours
ordinare in Python. Aplicatii numerice.		
Rezolvarea ecuatiilor cu derivate partiale si integrale in Python.	Activitate practică dirijată	4 Hours
Aplicatii numerice.		
Machine learning in Python. Aplicatii numerice folosind	Activitate practică dirijată	2 Hours
biblioteca SciPy.		

References:

Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

În vederea schițării conținuturilor, alegerii metodelor de predare/învățare titularii disciplinei au consultat conținutul unor discipline similare predate la universități din țară și străinătate. Conținutul este în acord cu cerințele Universității din București și cele la nivel național și internațional pentru redactarea și prezentarea lucrărilor științifice.

9. Assessment

13.07.2025

Activity type	Assessment criteria	Assessment methods	Weight î	n
			final mark	
Minimal	Finalizarea tuturor lucrărilor de laborator și nota 5 l	a colocviu.		
requirements	Expunerea corecta a subiectelor indicate pentru obți	nerea punctajului 5 la examenul fin	ıal.	
for passing				
the exam				

Date, Teacher's Practicals/Tutorials/Project instructor(s),

> name and signature, name and signature Lect. dr. Mihai Marciu Lect. dr. Mihai Marciu

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.105.2 Simulation methods in theoretical physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Simulation methods in theoretical physics
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, b	ibliography	60
Research in library, study of e	lectronic res	ources, field res	earch		30
Preparation for practicals/tutorials/projects/reports/homework				29	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				119	
3.8. Total hours per semester				175	
3.9. ECTS					7

4. Prerequisites (if necessary)

-	•	• ,
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Vnoveledge				
Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their			
	applications.			
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical			
	methods.			
	R4. The student/graduate solves problems in theoretical and computational physics with modern tools.			
	R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.			
	R6. The student/graduate integrates knowledge across disciplines to address complex physical			
	problems.			
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.			
	R3. Employs computational and numerical techniques for analysis and simulation.			
	R4. Solves theoretical and applied problems using specialized software.			
	R5. Evaluates scientific literature and data with critical judgment.			
	R6. Connects physics with related scientific and engineering domains.			

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Presentation of Monte-Carlo methods, in particular	Systematic exposition -	6 Hours
the Ising model and the simulated annealing	lecture. Examples	
computational processes. Calculation of		
multidimensional integrals by Monte-Carlo		
methods.		
Monte-Carlo quantum algorithms (variational,	Systematic exposition -	6 Hours
diffusive and integral path type). Quantum dots. He	lecture. Examples	
clusters on graphite surfaces		
Presentation of the fundamental aspects regarding	Systematic exposition -	4 Hours
genetic algorithms and their use in the study of	lecture. Examples	
physical systems		
Presentation of the implicit Runge-Kutta methods,	Systematic exposition -	4 Hours
with emphasis on symplecticness, volume	lecture. Examples	
conservation in phase space and numerical rigidity.		
Presentation of Gaussian quadratures. Case study:		
differential equations of Hamiltonian structure.		
Presentation of integral transformations, in	Systematic exposition -	4 Hours
particular Laplace transformations, and their use in	lecture. Examples	
the numerical treatment of integral equations		
Presentation of discrete models that describe the	Systematic exposition -	4 Hours
occurrence of earthquakes. Presentation of self-	lecture. Examples	
organized criticality and fractal distributions		

- 1. D.P. Landau şi K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press, 2014.
- 2. J.B. Anderson, Quantum Monte Carlo. Origins, development, applications, Oxford University Press, 2007.
- 3. T. Pang, An introduction to Quantum Monte Carlo methods, Morgan and Claypool Publishers, 2016.
- 4. D.A. Coley, An introduction to genetic algorithms for scientists and engineers, World Scientific, 1999.
- 5. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2016.
- 6. D. Porter şi D.S.G. Stirling, Integral equations: from spectral theory to applications, Cambridge University Press, 1991.

7.3 Practicals	Teaching techniques	Observations
Determination of critical temperature in high	Supervised practical	2 Hours
dimensional Ising systems using Monte-Carlo	activity	
methods. Code in Octave/python/C/C++		
Calculation of Ising integrals using Monte-Carlo	Supervised practical	2 Hours
methods. Code in Octave/python/C/C++	activity	
Numerical studies on quantum dots using quantum	Supervised practical	3 Hours
Monte-Carlo algorithms. Code in	activity	
Octave/python/C/C++		
Determination of the fundamental state energy for a	Supervised practical	3 Hours
spin glass using genetic algorithms	activity	

Numerical solution of non-linear oscillator equations by implicit Runge-Kutta methods. Energy conservation. Code in	Supervised practical activity	4 Hours
Octave/python/C/C++		
Determination of the volumes in the space of the phases populated by the regular and chaotic trajectories for a non-linear system with four dimensions. Code in Octave/python/C/C ++	Supervised practical activity	3 Hours
Solving Volterra-type integral equations by means of Laplace transforms. Code in Octave/python/C/C++	Supervised practical activity	3 Hours
Numerical resolution of the Olami-Feder-Christensen seismic model. Code in Octave/python/C/C++	Supervised practical activity	2 Hours
Determining the distribution of earthquake waiting times. Code in Octave/python/C/C ++	Supervised practical activity	2 Hours
One- and two-dimensional Ising systems	Problem solving	2 Hours
Analytic solutions of the equations which describe implicit Runge-Kutta methods using Gaussian quadratures	Problem solving	2 Hours

References:

- 1. D.P. Landau şi K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge University Press, 2014.
- 2. T. Pang, An introduction to Quantum Monte Carlo methods, Morgan and Claypool Publishers, 2016.
- 3. D.A. Coley, An introduction to genetic algorithms for scientists and engineers, World Scientific, 1999.
- 4. E. Hairer et al., Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer, 2002
- 5. B.M. McCoy şi T.T. Wu, The two-dimensional Ising model, Harvard University Press, 1973.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of	Written test/oral examination	60%
	exposition		
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	- Ability to use specific problem-	Homework	10%
	solving methods		
Practical	- Ability to use specific problem-	Homework	30%
	solving methods		
Minimal	At least 50% of exam score and of homeworks.		
requirements			
for passing			
the exam			

Date,

Teacher's name and signature,

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s), name and signature

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.109.1 Interaction of laser radiation with matter

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Interaction of laser radiation with matter		
2.2. Teacher	Conf. Madalina Boca		
2.3. Tutorials/Practicals instructor(s)	Conf. Madalina Boca		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

5. Iour commuted time					
3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	61
Research in library, study of el	ectronic res	ources, field rese	earch		31
Preparation for practicals/tutorials/projects/reports/homework					30
Tutorat					0
Other activities					0
3.7. Total hours of individual study					122
3.8. Total hours per semester				150	
3.9. ECTS					6

4. Prerequisites (if necessary)

_	
4.1. curriculum Classical electrodynamics, Quantum Mechanics, Numerical methods in Physics	
4.2. competences	Knowledge of basic topics in classical electrodynamics and quantum mechanics, ability to
	understand basic numerical algorithms

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with videoprojector, acces to internet
5.2. for tutorials/practicals	Computer room with videoprojector, acces to internet

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Theoretical description of laser beams; particular solutions	Systematic exposition -	4 Hours
of the Maxwell equations: plane waves, Gaussian beams, helical	lecture. Examples	
beams.		
2. Classical motion of the charged particle in the presence of	Systematic exposition -	4 Hours
a laser field; relativistic vs non relativist approach, radiation	lecture. Examples	
reaction effects, the Abraham-Lorentz force		
3. Classical description of radiation scattering: linear and non-	Systematic exposition -	4 Hours
linear Thomson scattering, the energy spectrum and the angular	lecture. Examples	
momentum of the emitted field		
4. Coherent non-linear Thomson scattering	Systematic exposition -	2 Hours
	lecture. Examples	

- J. D. Jackson, Classical electrodynamics, John Wiley and Sons, 1999
- C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012
- A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84, 1177 (2012)
- A. Gonoskov et al, Charged particle motion and radiation in strong electromagnetic fields, REv. Mod. Phys. 94, 045001, 2022
- D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997
- F. V. Hartemann, High-field electrodynamics, CRC press, 2002
- J. P. Torres (ed), Twisted photons: applications of light with orbital angular momentum, Wiley-VCH (2011)

7.3 Practicals	Teaching techniques	Observations
1. Techniques for graphical representation of the electromagnetic	Systematic exposition -	2 Hours
field	Guided practical activity	
2. Calculation of energy density, momentum, angular momentum	Systematic exposition -	2 Hours
of the electromagnetic field, application for some particular cases	Guided practical activity	
3. Numerical solution of the classical equation of motion for	Systematic exposition -	4 Hours
charged particles in electromagnetic field in the relativistic case,	Guided practical activity	
study of the effects of the radiation reaction.		
4. Numerical calculation of the observables of the field emitted	Systematic exposition -	4 Hours
in the non-linear Thomson scattering of radiation on electrons.	Guided practical activity	
5. Radiation reaction effects in non-linear Thomson scattering	Systematic exposition -	2 Hours
	Guided practical activity	

References:

- J. D. Jackson, Classical electrodynamics, John Wiley and Sons, 1999
- C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012
- A. Di Piazza, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84, 1177 (2012)
- A. Gonoskov et al, Charged particle motion and radiation in strong electromagnetic fields, REv. Mod. Phys. 94, 045001, 2022
- D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997
- F. V. Hartemann, High-field electrodynamics, CRC press, 2002
- J. P. Torres (ed), Twisted photons: applications of light with orbital angular momentum, Wiley-VCH (2011)
- J. J. Sakurai, Advanced quantum mechanics, Addison-Wesley, 1967
- R. H. Landau, M. J. Paez, and C. C. Bordeianu, Computational Physics: Problem Solving with Python, Wiley, 2024
- A. Gezerlis, Numerical Methods in Physics with Python, Cambridge University Press, 2023
- S. Spicklemire, Visualizing Quantum Mechanics with Python, CRC Press 2024

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria Assessment methods		Weight în
			final mark
Lecture	e - Clarity and coherence of exposition Written test + oral examin		70%
	- Correct use of the methods/physical models		
	- The ability to give specific examples		
Practical	Ability to use specific numerical methods for	Continuous evaluation,	30%
	problem solving	Homeworks	
Minimal Requirements for mark 5 (10 points scale):			
requirements - At least 50% of exam score and of homework.			
for passing			
the exam	Requirements for mark 10 (10 points scale):		
	- At least 95% of exam score and of homework.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Madalina Boca Conf. Madalina Boca

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.109.2 Quantum Optics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Quantum Optics
2.2. Teacher	Prof. dr. Iulia Ghiu
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Andreea Croitoru
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study	l	I.	, and the second	
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	61
Research in library, study of electronic resources, field research				31	
Preparation for practicals/tutorials/projects/reports/homework					30
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			122		
3.8. Total hours per semester			150		
3.9. ECTS			6		

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Algebra, Quantum mechanics
4.2. competences	Equations of Mathematical Physics

5. Conditions/Infrastructure (if necessary)

or conditions, that about a (if necessary)	
5.1. for lecture	Video projector
5.2. for tutorials/practicals	Devices in the lab

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R4. The student/graduate solves problems in theoretical and computational physics with modern tools.
	R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Quantization of the electromagnetic field. Entanglement	Systematic exposition.	2 Hours
Bell's inequalities	Systematic exposition.	2 Hours
Quantum random number generator	Systematic exposition.	2 Hours
Quantum key distribution	Systematic exposition.	2 Hours
Michelson interferometer	Systematic exposition.	2 Hours
Interference phenomena with single and double photodetection.	Systematic exposition.	2 Hours
The experiment of Hong, Ou, Mandel.		
The proposal of Hanbury Brown-Twiss experiment	Systematic exposition.	2 Hours

References:

- 1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.
- 3. Cohen-Tannoudji, Dupont-Roc, and Grynberg, Atom-Photon Interactions, Wiley, 1998.
- 4. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 5. C. W. Gardiner, Quantum Noise, Springer Verlag, 1991.
- 6. M. D. Al-Amri, M. M. El-Gomati, M. S. Zubairy (Editors), Optics in Our Time, Springer Open, 2016.
- 7. quED Entanglement Demonstrator A Science Kit for Quantum Physics, www.qutools.com, 2025

7.3 Practicals	Teaching techniques	Observations
Generation of entanglement. Entanglement visibility	Guided practical activity	2 Hours
The experimental proof of CHSH Bell inequality	Guided practical activity	2 Hours
Quantum Random Number Generator	Guided practical activity	2 Hours
Quantum key distribution based on the BB 84 protocol	Guided practical activity	2 Hours
Michelson interferometer	Guided practical activity	2 Hours
Hong-Ou-Mandel interferometer	Guided practical activity	2 Hours
Hanbury Brown-Twiss experiment	Guided practical activity	2 Hours

References:

- 1. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, 2002.
- 3. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 4. quED Entanglement Demonstrator A Science Kit for Quantum Physics, www.qutools.com, 2025.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Europe (Oxford University, Royal Institute of Technology - Stockholm). The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark

Lecture	- Clarity and coherence of exposition - Correct use of equations/mathematical methods/physical models and theories - The ability to give specific examples	Written examination	80%
Practical	- Ability to give the interpretation for the experimental results	Evaluation through practical activity	20%
Minimal requirements for passing the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr. Iulia Ghiu Lect. dr. Andreea Croitoru

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.110.1 Introduction to quantum theory of identical particles

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Introduction to quantum theory of identical particles
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week43.2. Lectures23.3. Tutorials/Practicals/Projects2/0/03.4. Total hours per semester563.5. Lectures283.6. Tutorials/Practicals/Projects28/0/0Distribution of estimated time for studyLearning by using one's own course notes, manuals, lecture notes, bibliography20Research in library, study of electronic resources, field research20Preparation for practicals/tutorials/projects/reports/homework25Tutorat0Other activities293.7. Total hours of individual study943.8. Total hours per semester1503.9. ECTS6	or rotal estimated time					
Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 25 Tutorat Other activities 29 3.7. Total hours of individual study 3.8. Total hours per semester 150	3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
Learning by using one's own course notes, manuals, lecture notes, bibliography20Research in library, study of electronic resources, field research20Preparation for practicals/tutorials/projects/reports/homework25Tutorat0Other activities293.7. Total hours of individual study943.8. Total hours per semester150	3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 25 Tutorat 0 Other activities 29 3.7. Total hours of individual study 94 3.8. Total hours per semester	Distribution of estimated time	for study				
Preparation for practicals/tutorials/projects/reports/homework Tutorat Other activities 29 3.7. Total hours of individual study 3.8. Total hours per semester 150	Learning by using one's own o	course notes.	, manuals, lectur	e notes, bibl	iography	20
Tutorat 0 Other activities 29 3.7. Total hours of individual study 94 3.8. Total hours per semester 150	Research in library, study of el	lectronic res	ources, field rese	earch		20
Other activities293.7. Total hours of individual study943.8. Total hours per semester150	Preparation for practicals/tutorials/projects/reports/homework					25
3.7. Total hours of individual study943.8. Total hours per semester150	Tutorat			0		
3.8. Total hours per semester 150	Other activities					29
	3.7. Total hours of individual s	study				94
3.9. ECTS 6	3.8. Total hours per semester					150
	3.9. ECTS			6		

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical Physics
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
The indistinguishability of quantum particles.	Systematic exposition -	2 Hours
Permutation operators. Particle exchange	lecture. Examples	
symmetry. Symmetrization postulate for identical		
quantum particles. Completely symmetric and		
antisymmetric quantum states.		
Occupation-number representation of quantum	Systematic exposition -	2 Hours
mechanics. Fock space.	lecture. Examples	
Creation and annihilation operators. Vacuum state.	Systematic exposition -	4 Hours
Fundamental algebraic relations for fermions and	lecture. Examples	
bosons creation/annihilation operators.		
Field operators. Definition and properties.		
One-body and two-body observables in many-body	Systematic exposition -	4 Hours
systems.	lecture. Examples	
Hartree-Fock approximation. Hartree-Fock method	Systematic exposition -	6 Hours
in occupation-number formalism. Density	lecture. Examples	
functional theory. Applications		
Coulomb interactions in many electron systems.	Systematic exposition -	4 Hours
Jellium model. Basic assumptions and	lecture. Examples	
Hamiltonian of the model. Ground state energy in the Hartree-		
Fock		
approximation. Hubbard's model in occupation-		
number formalism. Physical properties.		
Pairing interaction and superconductivity.	Systematic exposition -	6 Hours
Experimental observations and phenomenology of	lecture. Examples	
superconductivity. London's equations.		
Effective interaction between electrons and pairing		
Hamiltonian. Barden-Cooper-Schriffer (BCS)		
model. Properties. Bogoliubov-Valatin		
transformation. Quasiparticles. Pairing equations.		
Properties of superconductors.		

- 1. J.W. Negele, H. Orland, Quantum Many Particle Systems (Advanced Book Program)
- 2. P. Nozieres, Theory of Interacting Fermi systems (Advanced Book Program)
- 3. J.F. Annett, Superconductivity, Superfluidity and Condensates (Oxford University Press)
- 4. Fetter A.L., J.D. Walecka Quantum theory of Many Particle systems (McGraw Hill, New-York)
- 5. P.W. Anderson, Concepts in Solids, World Scientific, 1997
- 6.W. Nolting, Fundamentals of many-body physics, Springer 2009.

7.2 Tutorials	Teaching techniques	Observations
Fermi gas in ground state: Fermi's sea, relationship	Problem solving	2 Hours
between density and momentum. Applications.		
One-particle density matrix for fermion systems.	Problem solving	4 Hours
Pair correlation function for fermions and bosons.		
Definition, properties, physical consequences.		
Observables of interest in terms on creation and	Problem solving	4 Hours
annihilation operators: densities, currents.		

Hartree-Fock approximation: examples. Koopmans' theorem. Density functional theory. Hubbard model	Problem solving	8 Hours
Bogoliubov Theory of the Weakly Interacting Bose	Problem solving	4 Hours
Gas		
Cooper pair problem. Phonon-electron interaction.	Problem solving	6 Hours
Superconductivity: constant coupling function.		
Ground state energy. Derivation of gap equation.		
Physical interpretation.		

References:

- 1. P.W. Anderson, Concepts in Solids, World Scientific, 1997
- 2.W. Nolting, Fundamentals of many-body physics, Springer 2009.
- 3. P.A. Martin, F. Rothen, Many-body problems and quantum field theory, Springer, 2002

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

9. Assessing			
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of	Written test and oral	60%
	exposition	examination	
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	- Ability to use specific problem	Homeworks	40%
	solving methods		
Minimal	At least 50% of exam score and of homeworks.		
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.110.2 Theory of critical phenomena

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Theory of critical phenomena
2.2. Teacher	Prof. Dr. Virgil Baran
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study				
Learning by using one's own	course notes	, manuals, lectur	e notes, b	ibliography	20
Research in library, study of electronic resources, field research				20	
Preparation for practicals/tutorials/projects/reports/homework					25
Tutorat				0	
Other activities				29	
3.7. Total hours of individual study				94	
3.8. Total hours per semester				150	
3.9. ECTS			6		

4. Prerequisites (if necessary)

-	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Continuous phase transitions and critical points	Systematic exposition -	6 Hours
Critical phenomena in nature: liquid-gas phase	lecture. Examples	
transition, binary fluid, the ferromagnetic-		
paramagnetic transition, the transition to		
superconductivity, the He I-He II transition.		
Fundamental concepts: order parameter, critical		
exponents, correlation functions, scale invariance,		
classes of universality.		
Models for description of phase transitions	Systematic exposition -	8 Hours
Ising models in one, two and three dimensions.	lecture. Examples	
Networks models, XY model, Heisenberg model,		
Potts model, percolation model		
Mean-field theory for critical behaviour	Systematic exposition -	6 Hours
Theoretical framework. Landau theory. Critical	lecture. Examples	
exponents in Landau theory		
Renormalization group method	Systematic exposition -	8 Hours
The basic principles of the method.	lecture. Examples	
Renormalization group transformations and		
recurrence relations.		

References:

- 1. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena. An introduction to the renormalization Group, (Oxford UP 1995)
- 2. Leo P. Kadanoff, Statistical Physics. Statics, Dynamics and Renormalization. (World Scientific, 2001)
- 3. C. Domb, The Critical Point, (Taylor and Franciscs, 1996)

7.2 Tutorials	Teaching techniques	Observations
The Van der Waals model for the liquid-gas phase	Problem solving	4 Hours
transition: critical exponents in the mean-field		
approximation.		
The transfer matrix. The Duality transformation.	Problem solving	4 Hours
Onsager solution for Ising model in two		
dimensions.		
The renormalization group method for Ising model	Problem solving	5 Hours
in two dimensions.		
The Monte-Carlo method for Ising model in three		
dimensions		
The Momentum-Shell Renormalization Group	Problem solving	5 Hours
Percolation	Problem solving	4 Hours
Fixed points of the renormalization group	Problem solving	6 Hours
transformations: the physical meaning and		
properties. Linearized transformations around the		
fixed point. The origin of the scale behaviour.		
Renormalization group in differential form.		

- 1. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Adison-Wesley PC, 1992)
- 2. Franz Schwabl, Statistical mechanics, Springer-Verlag Berlin Heidelberg 2006

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
Tutorial	- Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50% of exam score and of homeworks.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025 Lect. dr. Ro

Academic year 2025/2026

DO.111.1 Quantum information and communication

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Quantum information and communication		
2.2. Teacher	Prof. dr. Iulia Ghiu		
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Andreea Croitoru		
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	1/1/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	14/14/0
Distribution of estimated time	for study		,		
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bibl	iography	47
Research in library, study of electronic resources, field research				24	
Preparation for practicals/tutorials/projects/reports/homework				23	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				94	
3.8. Total hours per semester				150	
3.9. ECTS			6		

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Optics, Equations of Mathematical Physics
4.2. competences	Knowledge about: Algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Video projector

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their				
	applications.				
	R2. The student/graduate derives and applies mathematical models to describe physical systems.				
	R4. The student/graduate solves problems in theoretical and computational physics with modern				
	tools.				
	R6. The student/graduate integrates knowledge across disciplines to address complex physical				
	problems.				
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.				
	R2. Applies mathematical methods for modeling and solving physics problems.				
	R4. Solves theoretical and applied problems using specialized software.				
	R6. Connects physics with related scientific and engineering domains.				

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Definition of the qubit. Two-qubit systems. Entangled states. Einstein-Podolsky-Rosen paradox. Bell's inequalities	Systematic exposition. Examples	4 Hours
The density operator for a spin-1/2 particle. The Bloch vector. The reduced density operator. Schmidt decomposition. Purifications	Systematic exposition. Examples	2 Hours
Quantum teleportation. Many-to-many teleportation	Systematic exposition. Examples	2 Hours
No-cloning theorem. Superdense coding. Shannon entropy and von Neumann entropy.	Systematic exposition. Examples	2 Hours
Trace distance. Polar decomposition. Definition of the fidelity. Uhlmann's theorem. Properties of the fidelity. Approximate cloning machine	Systematic exposition. Examples	4 Hours
Quantum cryptography	Systematic exposition. Examples	2 Hours
Quantum gates. Deutsch's algorithm. Deutsch-Jozsa algorithm	Systematic exposition. Examples	2 Hours
Bernstein-Vazirani algorithm. Simon algorithm	Systematic exposition. Examples	2 Hours
Grover's quantum search algorithm. Shor's factoring algorithm	Systematic exposition. Examples	4 Hours
Quantum channels	Systematic exposition. Examples	2 Hours
Description of the IBM-Q quantum computer in the cloud and its application for the implementation of quantum algorithms	Systematic exposition. Examples	2 Hours

- 1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
- 2. Asher Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, 1993.
- 3. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer Verlag, 2000.
- 4. S. M. Barnett, Quantum Information, Oxford Master series in physics, Oxford University Press, 2009.
- 5. Iulia Ghiu, Quantum Information, Lecture notes (2025)

7.2 Tutorials	Teaching techniques	Observations
Applications of the CHSH-Bell inequality. The analysis of the	Problem solving	2 Hours
density operator for a qubit.		
Operator functions. The reduced density operators. Finding the	Problem solving	4 Hours
Schmidt decomposition of a bipartite state. The analysis of the		
density operator of two spin-1/2 particles. The purity of a mixed		
state.		
Computing the trace distance and the fidelity for some particular	Problem solving	4 Hours
mixed states		
The generalized quantum teleportation and the evaluation of the	Problem solving	4 Hours
average fidelity. The quantum circuit for the gates: SWAP,		
Toffoli, Fredkin		

References:

- 1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
- 2. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer Verlag, 2000.
- 3. S. M. Barnett, Quantum Information, Oxford Master series in physics, Oxford University Press, 2009.
- 4. M. M. Wilde, Quantum Information Theory, Cambridge University Press, 2017.
- 5. W. H. Steeb, Y. Hardy, Problems and solutions in quantum computing and quantum information, World Scientific, 2004.

7.3 Practicals	Teaching techniques	Observations
Symbolic evaluation of the proposed problems	Guided practical activity	6 Hours
Applications using the IBM-Q quantum computer in the cloud	Guided practical activity	8 Hours

References:

- 1. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
- 2. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer Verlag, 2000.
- 3. S. M. Barnett, Quantum Information, Oxford Master series in physics, Oxford University Press, 2009.
- 4. M. M. Wilde, Quantum Information Theory, Cambridge University Press, 2017.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Europe (Oxford University, Royal Institute of Technology - Stockholm). The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight	în
			final mark	
Lecture	- Clarity and coherence of exposition	Written examination	100%	
	- Correct use of equations/mathematical			
	methods/physical models and theories			
	- The ability to give specific examples			
Minimal	Attending minimum 50 % of the lectures, 50 % of the	he tutorials and 100% for the lab ac	tivities.	
requirements				
for passing	Mark 5			
the exam	Minimum 50 % of the requirements for the final mark.			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr. Iulia Ghiu Lect. dr. Andreea Croitoru

Date of approval Head of department

name and signature
Lect. dr. Rozana ZUS

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DO.111.2 Collision theory

1. Study program

v i 0	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Collision theory
2.2. Teacher	Conf. Madalina Boca
2.3. Tutorials/Practicals instructor(s)	Conf. Madalina Boca
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3. Ittal estillated tille		1			
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	1/1/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	14/14/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	e notes, bi	bliography	40
Research in library, study of electronic resources, field research			30		
Preparation for practicals/tutorials/projects/reports/homework			24		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			94		
3.8. Total hours per semester			150		
3.9. ECTS					6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum Mechanics, Classical Electrodynamics, Equations of Mathematical Physics
4.2. competences	Good understanding of principles of quantum mechanics, Classical electrodynamics, Basic
	elements of Computational Physics

5. Conditions/Infrastructure (if necessary)

	• • • • • • • • • • • • • • • • • • • •
5.1. for lecture	Room with video projector, internet connection
5.2. for tutorials/practicals	Room with video projector, internet connection

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their
	applications.
	R2. The student/graduate derives and applies mathematical models to describe physical systems.
	R4. The student/graduate solves problems in theoretical and computational physics with modern
	tools.
	R6. The student/graduate integrates knowledge across disciplines to address complex physical
	problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.
	R2. Applies mathematical methods for modeling and solving physics problems.
	R4. Solves theoretical and applied problems using specialized software.
	R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Classification of collisions. Cross sections.	Systematic exposition -	2 Hours
Potential scattering, The scattering solution and the	lecture. Examples	
scattering amplitude.		
2. Scattering on central potentials, partial waves,	Systematic exposition -	2 Hours
phase shifts, phase shifts method. Resonances,	lecture. Examples	
Breit-Wigner formula, Scattering on Coulomb		
potential and potentials with Coulomb tail.		
3. The Lippmann-Schwinger equation. Green	Systematic exposition -	4 Hours
functions and operators. Born series method.	lecture. Examples	
4. Scattering on non-central potential	Systematic exposition -	4 Hours
	lecture. Examples	
5. Scattering of particles with spin. Scattering of	Systematic exposition -	6 Hours
identical particles	lecture. Examples	
6. The time dependent integral equation of potential	Systematic exposition -	4 Hours
scattering. Propagators.	lecture. Examples	
7. Laser assisted collisions, general formalism. R-matrix Floquet	Systematic exposition -	6 Hours
theory	lecture. Examples	

References:

- 1. R. M. Dreizler, T. Kirchner, and Cora S. Ludde, Quantum Collision Theory of Nonrelativistic Particles: An Introduction, Springer, 2022
- 2. M. L. Goldberger, K. M. Watson, Collision Theory, Dover Publications, Incorporated, 2014
- 3. C.J. Joachain, Quantum collision theory, North-Holland, 1975
- 4. P. Roman, Advanced quantum theory, Addison-Wesley Pub. Co., 1965
- 5. M. Dondera, V. Florescu, Fizica atomica teoretica, Ed. UB, 2005
- 6. J. Taylor, Scattering theory: the quantum theory of non-relativistic collisions, John Willey and Sons, 1972

7.2 Tutorials	Teaching techniques	Observations
The optical theorem. The Wronskian theorem and	Problem solving	2 Hours
applications.		
Finite range potentials. The effective range	Problem solving	2 Hours
formalism		
Analytical properties of the scattering amplitude.	Problem solving	4 Hours
Applications of the time dependent perturbation	Problem solving	4 Hours
theory in the scattering theory		
The Born approximation; examples	Problem solving	2 Hours

- 1. R. M. Dreizler, T. Kirchner, and Cora S. Ludde, Quantum Collision Theory of Nonrelativistic Particles: An Introduction, Springer, 2022
- 2. M. L. Goldberger, K. M. Watson, Collision Theory, Dover Publications, Incorporated, 2014
- 3. C.J. Joachain, Quantum collision theory, North-Holland, 1975
- 4. P. Roman, Advanced quantum theory, Addison-Wesley Pub. Co., 1965
- 5. M. Dondera, V. Florescu, Fizica atomica teoretica, Ed. UB, 2005
- 6. J. Taylor, Scattering theory: the quantum theory of non-relativistic collisions, John Willey and Sons, 1972

7.3 Practicals	Teaching techniques	Observations
----------------	---------------------	--------------

1. Numerical solution of the time-dependent Schrodinger	Guided practical activity	4 Hours
equation, numerical modelling of quantum potential scattering		
2. Numerical solution of the time independent Schrodinger	Guided practical activity	4 Hours
equation for central potentials, calculation of phase shifts		
3. Numerical study of the Coulomb effects in potential scattering	Guided practical activity	2 Hours
4. Numerical study of the time evolution of quantum systems in	Guided practical activity	4 Hours
external fields		

References:

- 1. J. M. Kinder and P. Nelson, A Student's Guide to Python for Physical Modeling, Princeton University Press, 2021
- 2. M. Bestehorn, Computational Physics, De Gruyter 2023

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples	Written test and oral examination	70%
Tutorial	Ability to use specific problem solving methods	Homeworks	15%
Practical	Ability to use numerical methods to solve specific problems	Homeworks	15%
Minimal	Requirements for mark 5 (10 points scale):		
requirements	- At least 50% of exam score and of homework.		
for passing			
the exam	Requirements for mark 10 (10 points scale):		
	- At least 95% of exam score and of homework.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Conf. Madalina Boca Conf. Madalina Boca

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.202.1 Advanced methods in statistical physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Advanced methods in statistical physics	
2.2. Teacher Lect. Dr. Dragoş Iustin PALADE		
2.3. Tutorials/Practicals instructor(s) Lect. Dr. Dragoş Iustin PALADE		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification	

3. Total estimated time

3.1. Hours per week 3 3.2. Lectures 2 3.3. Tutorials/Practicals/Projects 0/1 3.4. Total hours per semester 42 3.5. Lectures 28 3.6. Tutorials/Practicals/Projects 0/1 Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography 67 Research in library, study of electronic resources, field research 33 Preparation for practicals/tutorials/projects/reports/homework 33 Tutorat 0 Other activities 0 3.7. Total hours of individual study 13:	Total estilliated tille			
Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework Tutorat Other activities Other activities	Hours per week	3.2. Lectur		
Learning by using one's own course notes, manuals, lecture notes, bibliography67Research in library, study of electronic resources, field research33Preparation for practicals/tutorials/projects/reports/homework33Tutorat0Other activities0	Total hours per semester	3.5. Lectur		
Research in library, study of electronic resources, field research33Preparation for practicals/tutorials/projects/reports/homework33Tutorat0Other activities0	ribution of estimated time	y		
Preparation for practicals/tutorials/projects/reports/homework 33 Tutorat 0 Other activities 0	ning by using one's own co	otes, manuals, le		
Tutorat 0 Other activities 0	Research in library, study of electronic resources, field research			
Other activities 0	aration for practicals/tutor	jects/reports/hon		
	rat			
3.7. Total hours of individual study	er activities			
	Total hours of individual s			
3.8. Total hours per semester	Total hours per semester			
3.9. ECTS 7	ECTS			

4. Prerequisites (if necessary)

-	
4.1. curriculum	Quantum mechanics, Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	Video projector

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their			
	applications.			
	R2. The student/graduate derives and applies mathematical models to describe physical systems.			
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical			
	methods.			
	R4. The student/graduate solves problems in theoretical and computational physics with modern			
	tools.			
	R6. The student/graduate integrates knowledge across disciplines to address complex physical			
	problems.			
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.			
	R2. Applies mathematical methods for modeling and solving physics problems.			
	R3. Employs computational and numerical techniques for analysis and simulation.			
	R4. Solves theoretical and applied problems using specialized software.			
	R6. Connects physics with related scientific and engineering domains.			

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Revision of elements of statistical and quantum mechanics.	Systematic exposition -	2 Hours
	lecture. Examples	
The formalism of the Green functions: General properties of	Systematic exposition -	8 Hours
Green functions (symmetry, Lehman representations), physical	lecture. Examples	
interpretation for the retarded Green function.		
The formalism of the density functional: The theory of the	Systematic exposition -	6 Hours
density functional. Hohenberg-Kohn theorems. The Kohn-Sham	lecture. Examples	
equations. Approximate functionals. Introduction in the theory		
of the time dependent density functional.		
The dynamics of the Bose-Einstein condensate The Gross-	Systematic exposition -	6 Hours
Pitaevskii equation. Elementary excitations and collective modes.	lecture. Examples	
Solitons. Traps for condensates for finite temperature.		
Quantum hydrodynamic models. Electrostatic waves.	Systematic exposition -	2 Hours
	lecture. Examples	
Ginzburg-Landau theory of superconductivity. Basic equations.	Systematic exposition -	4 Hours
From type-I superconductor to type-II superconductors.	lecture. Examples	

References:

- 1. E. Lipparini, Modern many-particle physics. Atomic gases, quantum dots and quantum fluids, World Scientific, 2003
- 2. R.G. Paar, W. Yang, Density functional theory for atoms and molecules, Oxford UP,1989
- 3. C.A. Ullrich, Time-Dependent Density Functional Theory, Oxford UP, 2012
- 4. J.K. Jain, Composite fermions, Cambridge UP, 2007
- 5. T. Chakraborty, P. Pietilainen, The quantum Hall effects, Fractional and Integral, Springer 1995
- 6. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge UP, 2008
- 7. Z.F. Ezawa, Quantum Hall effects, World Scientific, 2007
- 8. Fetter A.L., J.D. Walecka, Quantum theory of Many Particle systems (McGraw Hill, New-York)
- 9. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, WILEY-VCH Verlag GmbH 2004

7.3 Practicals	Teaching techniques	Observations
Galitskii-Migdal theorems. The relation with the observables.	Problem solving	2 Hours
Differential equations. Correlation functions:definition, general		
properties, the similarity with the Green functions.		
Applications of the Green formalism for various systems. The	Problem solving	2 Hours
Thomas-Fermi approximation and its extensions.		
Applications of Density Functional Theory	Problem solving	2 Hours
Collective dynamics of Bose-Einstein condensates	Problem solving	2 Hours
The theory of compound fermions	Problem solving	2 Hours
Superconductivity: surface energy and	Problem solving	2 Hours
thermodynamic critical field in Ghinzburg-Landau		
theory. Vortex lattice. Josephson tunnelling.		
		2 Hours

References:

A.S. Alexandrov Theory of Superconductivity .From Weak to Strong Coupling, IOP Publishing Ltd 2003

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
Practical	- Ability to use specific problem solving methods	Homeworks	40%
Minimal	At least 50% of exam score and of homeworks.		
requirements for passing the exam	At least 50% of laboratory attendance. At least 50% of lecture attendance.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Lect. Dr. Dragoş Iustin PALADE Lect. Dr. Dragoş Iustin PALADE

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.202.2 Computational methods for electronic structures of condensed systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Computational methods for electronic structures of condensed systems
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation examen 2.7. Classification DA

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study		,		
Learning by using one's own course notes, manuals, lecture notes, bibliography					67
Research in library, study of electronic resources, field research			33		
Preparation for practicals/tutorials/projects/reports/homework			33		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

_	`	V /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.
	R3. Employs computational and numerical techniques for analysis and simulation.
	R5. Evaluates scientific literature and data with critical judgment.
Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R3. Takes responsibility for applying suitable research methods.
	R5. Performs independent investigations with critical awareness.

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessmo	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Minimal			
requirements			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025

for passing the exam

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025 L

Academic year 2025/2026

DO.203.1 Computational methods in modern physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Computational methods in modern physics
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

3. Ittal estillated tille					
3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time	for study		•		
Learning by using one's own o	course notes	, manuals, lectur	e notes, bib	liography	30
Research in library, study of electronic resources, field research			30		
Preparation for practicals/tutorials/projects/reports/homework			30		
Tutorat			0		
Other activities			43		
3.7. Total hours of individual study			133		
3.8. Total hours per semester			175		
3.9. ECTS			7		

4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Linear algebra, Analytical mechanics, Electrodynamics, Quantum
	Mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and data
	processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	Scientific computing laboratory

6. Learning outcomes

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.
Responsibility and autonomy	R1. Presents scientific work clearly to both expert and general audiences.

7. Contents

7.1 Lecture [chapters]	Teaching techniques	Observations
Simplectic and near-simplectic methods for	Systematic exposition -	2 Hours
numerical solving of differential equations with	lecture. Examples	
Hamiltonian structure. Energy and volume		
conservation in the phase space.		

Finite-difference methods for the three-dimensional Schrödinger equation (especially for periodic and harmonic potential). Conservation of the norm. Stability conditions. Numerical instabilities. Border conditions. Analytical calculations for calibrating the accuracy of numerical schemes.	Systematic exposition - lecture. Examples	4 Hours
Finite difference methods for Maxwell equations. Border conditions. Numerical instabilities.	Systematic exposition - lecture. Examples	6 Hours
The Vlasov equation and the test particle method. Derivation of particle-in-cell equations. Study of shape functions.	Systematic exposition - lecture. Examples	4 Hours
Self-consistent solving of field equations and those describing particle dynamics. Boris algorithm for particle propagation over time. Courant stability condition.	Systematic exposition - lecture. Examples	4 Hours
Interaction of laser pulses with metal clusters	Systematic exposition - lecture. Examples	4 Hours
Comparative presentation of particle-in-cell codes available for solving equations.	Systematic exposition - lecture. Examples	4 Hours

References:

- 1. B. Leimkuhler şi S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.
- 2. D.F. Griffiths, J.W. Dold şi D.J. Silvester, Essential partial differential equations. Analytical and computational aspects, Springer, 2015.
- 3. S. Mazumder, Numerical methods for partial differential equations. Finite difference and finite volume methods, Academic Press, 2016.
- 4. S.E. Koonin şi D.C. Meredith, Computational physics. Fortran versions, Perseus Books, 1998.
- 5. P. Mulser şi D. Bauer, High power laser-matter interaction, Springer, 2010.
- 6. P.G. Reinhard şi E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- 7. K. Langanke, J.A. Maruhn şi S.E. Koonin, Eds., Computational Nuclear Physics 2. Nuclear Reactions, Springer, 1993.
- 8. T.D. Arber et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion 57, 113001 (2015)

7.3 Practicals	Teaching techniques	Observations
Numerical solution of differential equations with	Supervised practical	2 Hours
Hamiltonian structure by simplectic and quasi-	activity	
simplectic methods. Code in Octave/python/C/C		
++		
The numerical solution of the Schrödinger	Supervised practical	3 Hours
equation. Code in Octave/python/C/C ++	activity	
Numerical solution of Maxwell equations. Code in	Supervised practical	3 Hours
Octave/python/C/C++	activity	
Numerical solution of particle-in-cell equations.	Supervised practical	3 Hours
Observation of ultra-intense laser pulse interaction	activity	
with gaseous and solid targets, wakefield		
acceleration. Use of EPOCH PIC code		
Numerical solution of the Vlasov equation. Use of	Supervised practical	3 Hours
existing FORTRAN programs	activity	

- 1. B. Leimkuhler şi S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.
- 2. K.W. Morton şi D.F. Mayers, Numerical solution of partial differential equations, Cambridge University Press, 2005.
- 3. Yu.N. Grigoryev et al., Numerical particle-in-cell methods: Theory and applications, de Gruyter, 2002.
- 8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 		60%
Minimal requirements for passing the exam			·

Practicals/Tutorials/Project instructor(s), Date, Teacher's name and signature, name and signature

13.07.2025

Date of approval Head of department

name and signature

Lect. dr. Rozana ZUS 15.07.2025

Academic year 2025/2026

DO.203.2 Theory of intense laser radiation interaction with atomic and nuclear systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2. Course unit													
2.1. Course unit titl	e		Th	eory of int	ense	laser	radiat	ion i	interaction	with	atomic	and	nuclear
			sys	stems									
2.2. Teacher			Co	nf. M. Boca	ı								
2.3. Tutorials/Practi	icals	instructor(s)	Co	nf. M. Boca	ı								
2.4 Year of study	2	2.5. Semester	1	2.6. Type	of eva	aluati	on e	xam	2.7.Class	sificati	on		

3. Total estimated time

3.1. Hours per week	3	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/1/0
3.4. Total hours per semester	42	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/14/0
Distribution of estimated time for study					
Learning by using one's own of	ourse notes	, manuals, lectur	e notes, bibl	iography	67
Research in library, study of el	ectronic res	ources, field rese	earch		33
Preparation for practicals/tutorials/projects/reports/homework					33
Tutorat					0
Other activities					0
3.7. Total hours of individual s	study				133
3.8. Total hours per semester					175
3.9. ECTS					7

4. Prerequisites (if necessary)

4.	1. curriculum	Programing languages, Quantum mechanics, Nuclear physics, Classical electrodynamics
4.	2. competences	Understanding of some techniques in numerical methods in physics,

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Room with videoprojector, internet access
5.2. for tutorials/practicals	Computer Room with videoprojector, internet access

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their
	applications.
	R2. The student/graduate derives and applies mathematical models to describe physical systems.
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical
	methods.
	R4. The student/graduate solves problems in theoretical and computational physics with modern
	tools.
	R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.
	R6. The student/graduate integrates knowledge across disciplines to address complex physical
	problems.

Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.
	R2. Applies mathematical methods for modeling and solving physics problems.
	R3. Employs computational and numerical techniques for analysis and simulation.
	R4. Solves theoretical and applied problems using specialized software.
	R5. Evaluates scientific literature and data with critical judgment.
	R6. Connects physics with related scientific and engineering domains.
Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
1 1	
and autonomy	R2. Manages independent and collaborative research projects effectively.
1 -	
1 -	R2. Manages independent and collaborative research projects effectively.
1 -	R2. Manages independent and collaborative research projects effectively. R3. Takes responsibility for applying suitable research methods.
1 -	R2. Manages independent and collaborative research projects effectively.R3. Takes responsibility for applying suitable research methods.R4. Organizes and interprets data rigorously and efficiently.
1 -	 R2. Manages independent and collaborative research projects effectively. R3. Takes responsibility for applying suitable research methods. R4. Organizes and interprets data rigorously and efficiently. R5. Performs independent investigations with critical awareness.

7.1 Lecture [chapters]	Teaching techniques	Observations
1. Fundamentals of atomic and nuclear systems	Systematic exposition -	2 Hours
	lecture. Examples	
2. The time evolution of atomic systems in interaction with	Systematic exposition -	4 Hours
intense radiation fields. Perturbative vs non perturbative regime.	lecture. Examples	
3. Relativistic effects in the interaction of atomic systems with	Systematic exposition -	4 Hours
intense electromagnetic fields; applications for ionization and	lecture. Examples	
high harmonic generation		
4. Boltzmann-Vlasov and Boltzmann-Maxwell transport	Systematic exposition -	4 Hours
equations	lecture. Examples	
5. Test particle method for the numerical treatment of	Systematic exposition -	4 Hours
Vlasov-type equations. Derivation of particle-in-cell equations	lecture. Examples	
6. The interaction of intense laser radiation with atomic	Systematic exposition -	6 Hours
nuclei and metal clusters. Experimental and theoretical results.	lecture. Examples	
7. Presentation of future experiments at the European	Systematic exposition -	4 Hours
research infrastructure Extreme Light Infrastructure	lecture. Examples	

- P.M. Bellan, Fundamentals of plasma physics, Cambridge University Press, 2008
- P. Mulser și D. Bauer, High power laser-matter interaction, Springer, 2010
- K. Langanke, J.A. Maruhn şi S.E. Koonin, Eds., Computational Nuclear Physics 2. Nuclear reactions, Springer, 1993
- P.G. Reinhard şi E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004
- C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012
- D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997
- F. V. Hartemann, High-field electrodynamics, CRC press, 2002
- P. Michel, Introduction to Laser-Plasma Interactions, Springer International Publishing, 2023

7.3 Practicals	Teaching techniques	Observations
1. Numerical methods for solving the time-dependent	Guided practical activity;	6 Hours
Schrodinger equation for atomic systems in interaction with	problem solving	
electromagentic fields. Comparisson with known analytical		
results		
2. Numerical solution of Vlasov-type equations. Numerical	Guided practical activity;	6 Hours
determination of collective modes (especially pygmy dipole	problem solving	
resonance and giant dipole resonance) in different atomic species		
3. Numerical study of the interaction of laser pulses with metallic	Guided practical activity;	2 Hours
clusters	problem solving	

References:

P.M. Bellan, Fundamentals of plasma physics, Cambridge University Press, 2008

P. Mulser şi D. Bauer, High power laser-matter interaction, Springer, 2010

K. Langanke, J.A. Maruhn şi S.E. Koonin, Eds., Computational Nuclear Physics 2. Nuclear reactions, Springer, 1993

P.G. Reinhard și E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004

C. Joachain, A. Kylstra, R. M. Potvliege, Atoms in intense laser fields, Cambridge University Press, 2012

D. Suter, The Physics of Laser-Atom Interactions (Cambridge Studies in Modern Optics), 1997

F. V. Hartemann, High-field electrodynamics, CRC press, 2002

P. Michel, Introduction to Laser-Plasma Interactions, Springer International Publishing, 2023

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples	Written test and oral examination	70%
Practical	Ability to use numerical methods to solve specific problems	Homeworks	30%
Minimal	Requirements for mark 5 (10 points scale):		
requirements	- At least 50% of exam score and of homework.		
for passing			
the exam	Requirements for mark 10 (10 points scale):		
	- At least 95% of exam score and of homework.		

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,

13.07.2025 Conf. M. Boca Conf. M. Boca

Date of approval Head of department

name and signature

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.204.1 Non-abelian gauge theories and standard model of elementary particles

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Non-abelian gauge theories and standard model of elementary particles
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification

3. Total estimated time

et rotar estimated time					
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study				
Learning by using one's own of	course notes	, manuals, lectur	e notes, bibl	iography	80
Research in library, study of electronic resources, field research			40		
Preparation for practicals/tutorials/projects/reports/homework			40		
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study			160		
3.8. Total hours per semester			200		
3.9. ECTS				8	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.
	R6. Integrates interdisciplinary approaches in research tasks.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025

for passing the exam

Date of approval Head of department name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026

DO.204.2 Theory of hadronic matter in extreme conditions and quark-gluon plasma

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Theory of hadronic matter in extreme conditions and quark-gluon plasma		
2.2. Teacher	Prof. Dr. Virgil Baran		
2.3. Tutorials/Practicals instructor(s)	Lect. Dr. Virgil V. Baran		
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes.	, manuals, lectur	e notes, bibl	iography	30
Research in library, study of electronic resources, field research			15		
Preparation for practicals/tutorials/projects/reports/homework				20	
Tutorat				0	
Other activities					95
3.7. Total hours of individual study				160	
3.8. Total hours per semester			200		
3.9. ECTS				8	

4. Prerequisites (if necessary)

· · · · · · · · · · · · · · · · · · ·	() · · · · · · · · · · · · · · · · · ·
4.1. curriculum	Advanced quantum mechanics, statistical quantum physics, introduction to quantum field theory
	and elementary particles, Theory of nuclear systems and photonuclear reactions
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	0 1	
5.1.	for lecture	
5.2.	for tutorials/practicals	PCs with intranet connection to the local computing cluster

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods.
	R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.

7.1 Lecture [chapters]	Teaching techniques	Observations
Properties of nuclear matter at finite temperature. Nuclear	Systematic exposition -	5 Hours
multifragmentation and liquid-gas phase transition in binary	lecture. Examples	
systems. Reaction mechanisms' evolution with the energy and		
impact parameter in heavy ion collisions.		
Quarks and irreducible representations of the SU(3) group.	Systematic exposition -	5 Hours
Classification of strongly interacting elementary particles.	lecture. Examples	
Fundamentals of Quantum Chromodynamics.		
Nonperturbative properties of strongly interacting matter:	Systematic exposition -	5 Hours
deconfinement and spontaneous breaking of the chiral symmetry.	lecture. Examples	
Order parameters for the chiral phase transition and for the		
confinement-deconfinement phase transition. Structure of the		
QCD vacuum.		
Phenomelogical models of the nucleon. The Nambu-Jona-	Systematic exposition -	5 Hours
Lasinio model. Analogies and differences between the	lecture. Examples	
electromagnetic and quark-gluon plasmas. Experimental		
evidence of quark-gluon plasma formation in the RHIC and LHC		
experiments. Description of the quark-gluon plasma dynamics		
within transport models.		

References:

D. Durand, E. Suraud, B. Tamain, Nuclear dynamics in nucleonic regime, IOP 2001

K.Yagi, T. Hatsuda, Y. Miake, Quark gluon plasma. From Big Bang to Little Bang, Cambridge UP, 2005

W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics, Springer 2007

J. Letessier, J. Rafelski, Hadrons and quark-gluon plasma, Cambridge UP 2004

R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006

7.2 Tutorials	Teaching techniques	Observations
Study of instabilities in asymmetric nuclear matter. The relativistic sigma-omega model of nuclear matter.	Problem solving	7 Hours
Quark energies and wavefunctions, gluon corrections, charge distribution, magnetic moment of the proton within the MIT bag model of the nucleon.	Problem solving	7 Hours
Equation of state for quark and gluon systems at finite density and temperature.	Problem solving	6 Hours

References:

Durand, E. Suraud, B. Tamain, Nuclear dynamics in nucleonic regime, IOP 2001

K. Yagi, T. Hatsuda, Y. Miake, Quark gluon plasma. From Big Bang to Little

Bang, Cambridge UP, 2005

W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics, Springer 2007

J. Letessier, J. Rafelski, Hadrons and quark-gluon plasma, Cambridge UP 2004

R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
Activity type	Assessment criteria	Assessment methods	
			final mark
Lecture	- Clarity and coherence of	Written test and oral	60%
	exposition	examination	
	*	examination	
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	-Ability to use specific problem	Homeworks	40%
	solving methods		
Minimal	At least 50% of exam score and of homeworks.		•
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature,

13.07.2025 Prof. Dr. Virgil Baran Lect. Dr. Virgil V. Baran

Date of approval Head of department

name and signature

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.106 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own c	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research				6	
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				25	
3.8. Total hours per semester				25	
3.9. ECTS					1

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate acquires civic competences.
Skills	R10. The student/graduate improves communication skills.
Responsibility	R10. Shows spirit of initiative and entrepreneurship.
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

J. Assessin	LIIL			
Activity type	Assessment criteria	Assessment methods	Weight	în
			final marl	k

Minimal
requirements
for passing
the exam

Date, Teacher's

name and signature,

 $Practicals/Tutorials/Project\ instructor(s),$

name and signature

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

13.07.2025

Academic year 2025/2026

DFC.112 Physics of mesoscopic systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State and Biophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Physics of mesoscopic systems			
2.2. Teacher	Prof. dr. Lucian Ion			
2.3. Tutorials/Practicals instructor(s)	drd. Amanda Preda			
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation examen 2.7.Classification DS			

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	28/0/0
Distribution of estimated time	for study		II.	-	
Learning by using one's own o	ourse notes	, manuals, lectur	e notes, bibl	iography	22
Research in library, study of electronic resources, field research			11		
Preparation for practicals/tutorials/projects/reports/homework			11		
Tutorat			0		
Other activities			0		
3.7. Total hours of individual study			44		
3.8. Total hours per semester			100		
3.9. ECTS			4		

4. Prerequisites (if necessary)

4.1. curriculum	Electrodynamics, Solid state physics
4.2. competences	knowledge of electronic and optical properties of solids

5. Conditions/Infrastructure (if necessary)

or conditions, initiating details (in increasing)		
5.1. for lecture	room with multimedia infrastructure	
5.2. for tutorials/practicals	computer room	

6. Learning outcomes

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.	
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R5. Evaluates scientific literature and data with critical judgment.	
Responsibility	R1. Presents scientific work clearly to both expert and general audiences.	
and autonomy	R2. Manages independent and collaborative research projects effectively.	
	R5. Performs independent investigations with critical awareness.	

7. Contents

7.1 Lecture [chapters]	Teaching techniques			Observations	
Introduction: description of mesoscopic systems.	Growth and	Systematic	exposition	-	4 Hours
processing methods. Length scales.		lecture. Exan	nples.		

Electronic structure of mesoscopic systems. Envelope wavefunction method.	Systematic exposition - lecture. Examples.	4 Hours
Anderson localization. Scaling theory of localization. Reduced dimensionality. Case d _i =2. Case d _i 2. Metal-insulator transition	Systematic exposition - lecture. Examples.	6 Hours
Quantum interference effects in charge transport. Landauer-Buttiker formalism. Applications.	Systematic exposition - lecture. Examples.	4 Hours
Charge transport în magnetic fields. Shubnikov-de Haas oscillations. Integer quantum Hall effect.	Systematic exposition - lecture. Examples.	4 Hours
Aharonov-Bohm effect. Berry phase.	Systematic exposition - lecture. Examples.	4 Hours
Coulomb blockade în semiconductor nanostructures	Systematic exposition - lecture. Examples.	2 Hours

References:

- 1. D.K. Ferry, S.M. Goodnick, Transport in nanostructures (Cambridge University Press, Cambridge, UK, 1997).
- 2. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- 3. H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard (Eds.), Nanophysics: Coherence and Transport (Elsevier, Amsterdam, Netherland, 2005).
- 4. V.F. Gantmakher, Electrons and disorder în solids (Clarendon Press, Oxford, UK, 2005)
- 5. L. Ion, Course notes

7.2 Tutorials	Teaching techniques	Observations
Electronic states în mesoscopic systems. Envelope wavefunction	Exposition. Guided work	4 Hours
method. Aplications.		
Effect of disorder in 1D and 2D electronic systems.	Exposition. Guided work	4 Hours
Electronic states in 2D electron systems in magnetic fields.	Exposition. Guided work	6 Hours
Disorder effects.		
Charge transport in mesoscopic structures. Landauer-Buttiker	Exposition. Guided work	6 Hours
formalism.		
Weak localization regime.	Exposition. Guided work	4 Hours
Electron-phonon interaction în low-dimensional systems. Peierls	Exposition. Guided work	4 Hours
transition.		

References:

- 1. L. Mihaly, M.C. Martin, Solid State Physics Problems and solutions (Wiley, New York, USA, 1996)
- 2. S. Datta, Electronic Transport în Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997).
- 3. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, UK, 1997)

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Saclay, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

9. Assessmo	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Explicitness, coherence and concision of	Written and oral exam	50%
	scientific statements;		
	- Correct use of physical models and of specific		
	mathematical methods;		
	- Ability to analyse specific examples;		
Tutorial	- Use of specific physical and mathematical	Homework, research projects	50%
	methods and techniques;		

	Minimal	Requirements for mark 5 (10 points scale)
requirements Correct solving of subjects indicated as required for obtaining mark 5.		Correct solving of subjects indicated as required for obtaining mark 5.
	for passing	Requirements for mark 10 (10 points scale)
	the exam	Correct solving of subjects indicated as required for obtaining mark 10.

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature
Prof. dr. Lucian Ion drd. Amanda Preda

Date of approval Head of department

13.07.2025

name and signature

15.07.2025 Assoc. prof. Adrian RADU

Academic year 2025/2026

DFC.113 Advanced methods for parallel computing

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State and Biophysics
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Advanced methods for parallel computing
2.2. Teacher	Prof. dr. Lucian Ion
2.3. Tutorials/Practicals instructor(s)	Lect. dr. Claudiu Locovei
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation colocviu 2.7.Classification DC

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0	
3.4. Total hours per semester 56 3.5. Lectures 28 3.6. Tutorials/Practicals/Projects						
Distribution of estimated time	for study					
Learning by using one's own or	course notes	, manuals, lectur	e notes, bibl	iography	22	
Research in library, study of e	lectronic res	ources, field rese	earch		11	
Preparation for practicals/tutor	rials/projects	s/reports/homew	ork		11	
Tutorat					0	
Other activities			0			
3.7. Total hours of individual study			44			
3.8. Total hours per semester			100			
3.9. ECTS			4			

4. Prerequisites (if necessary)

_	
4.1. curriculum	C/C++ and Python programming
4.2. competences	C/C++ and Python programming techniques

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	room with multimedia infrastructure
5.2. for tutorials/practicals	computer room

6. Learning outcomes

Knowledge	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions.
Skills	R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment.
Responsibility and autonomy	R3. Takes responsibility for applying suitable research methods. R4. Organizes and interprets data rigorously and efficiently. R5. Performs independent investigations with critical awareness.

7. Contents

	7.1 Lecture [chapters]	Teaching techniques	Observations
--	------------------------	---------------------	--------------

Characteristics of parallel computing models. Performan	ce Systematic exposition - 4 Hours
indicators.	lecture. Examples.
MPI standard. MPI programming techniques	Systematic exposition - 10 Hours
	lecture. Examples.
OpenMP programming techniques	Systematic exposition - 8 Hours
	lecture. Examples.
Algorithms for parallel computing	Systematic exposition - 6 Hours
	lecture. Examples.

References:

- 1. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, New York, USA, 2003).
- 2. T. Rauber, G. Runger, Parallel Programming for multicore and cluster systems (Springer-Verlag, Berlin, Germany, 2010).
- 3. W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the Message-Passing Interface (MIT Press, Cambridge, USA, 2014).
- 4. L. Ion, Note de curs (pdf)

7.3 Practicals	Teaching techniques	Observations
Functions/subroutines for MPI environment management. Point-	Guided practical work	4 Hours
to-point communications		
Groups and communicators in the MPI environment. Virtual	Guided practical work	4 Hours
topologies.		
Derived data types. One-sided communication operations	Guided practical work	4 Hours
Dynamic process management in MPI. I/O parallel operations.	Guided practical work	4 Hours
OpenMP multithreading	Guided practical work	4 Hours
Applications: transport in mesoscopic systems; electronic	Guided practical work	8 Hours
structure of materials		

References:

- 1. G.A. Nemneş, T.L. Mitran, A. Nicolaev, L. Ion, Aplicaţii MPI pentru sisteme de calcul paralel îndrumător de laborator (Editura Universităţii din Bucureşti, Bucureşti, 2015).
- 2. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, New York, USA, 2003).
- 2. Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, New York, USA, 2003).
- 3. W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the Message-Passing Interface (MIT Press, Cambridge, USA, 2014).

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

9. Assessm	ent		
Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Correct use of the studied programming models	Exam	60%
	and techniques;		
	- Ability to solve specific problems.		
Practical	- Knowledge of parallel programming techniques	Homeworks	40%
	and of the parallel computing infrastructure;		

Minimal requirements	Requirements for mark 5 (10 points scale) Correct solving of subjects indicated as required for obtaining mark 5 (final exam and homeworks).
for passing	Requirements for mark 10 (10 points scale)
the exam	Correct solving of subjects indicated as required for obtaining mark 10 (final exam and
	homeworks).(operații de comunicare MPI).
	Obţinerea notei 10:
	- Abilități, cunoștințe profund argumentate
	- Capacitate demonstrată de analiză a problemelor, rezolvarea corectă a tuturor subiectelor

Date, Teacher's Practicals/Tutorials/Project instructor(s),

name and signature, name and signature

13.07.2025 Prof. dr. Lucian Ion Lect. dr. Claudiu Locovei

Date of approval Head of department

name and signature

15.07.2025 Assoc. prof. Adrian RADU

Academic year 2025/2026 DFC.114 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 1 2.5. Semester	2 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own o	ourse notes,	manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research					
Preparation for practicals/tutorials/projects/reports/homework					
Tutorat					
Other activities					
3.7. Total hours of individual study					
3.8. Total hours per semester					
3.9. ECTS					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	· • • • • • • • • • • • • • • • • • • •
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate acquires civic competences.			
Skills	R10. The student/graduate improves communication skills.			
Responsibility	R10. Shows spirit of initiative and entrepreneurship.			
and autonomy				

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

J. Assessin	٠١١٤			
Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	

Minimal
requirements
for passing
the exam

Date, Teacher's

name and signature,

 $Practicals/Tutorials/Project\ instructor(s),$

name and signature

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

13.07.2025

Academic year 2025/2026

DFC.115 Data science and computational electronic structure methods for soft-end bio-matter

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

ui							
2.1. Course unit title			Data science and computational electronic structure methods for soft-end				
			bio	o-matter			
2.2. Teacher							
2.3. Tutorials/Pract	icals	instructor(s)					
2.4 Year of study	1	2.5. Semester	1	2.6. Type of evaluation	examen	2.7.Classification	

3. Total estimated time

3. Iotai estimatea time						
3.1. Hours per week	2	3.2. Lectures	1	3.3. Tutorials/Practicals/Projects	0/1/0	
3.4. Total hours per semester	28	3.5. Lectures	14	3.6. Tutorials/Practicals/Projects	0/14/0	
Distribution of estimated time for study						
Learning by using one's own o	course notes	, manuals, lectur	e notes, l	pibliography	13	
Research in library, study of electronic resources, field research						
Preparation for practicals/tutorials/projects/reports/homework					6	
Tutorat						
Other activities						
3.7. Total hours of individual study						
3.8. Total hours per semester					53	
3.9. ECTS						

4. Prerequisites (if necessary)

_	`	V /
4.1. curriculum		
4.2. competences		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	

Knowledge	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems. R9. The student/graduate contributes to teamwork and interdisciplinary projects, managing resources efficiently.
Skills	R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment. R6. Connects physics with related scientific and engineering domains. R9. Collaborates across disciplines and manages research workflows.

Responsibility	R3. Takes responsibility for applying suitable research methods.
and autonomy	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.
	R6. Integrates interdisciplinary approaches in research tasks.
	R9. Contributes actively to research teams and professional communities.

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities,

-	8. Compatibility of the course unit contents with the expectations of the representatives of epistems of the study program		
		VI U	
9. Assessm			
Activity type	Assessment criteria	Assessment methods	Weight în final mark
Minimal		·	ı
requirements			
for passing			
the exam			
Date,	Teacher's	Practicals/Tutorials/Project instructor(s),	
12.07.007	name and signature,	name and signature	
13.07.2025			
Date of approv	val	Head of department name and signature	
15.07.2025		Lect. dr. Rozana ZUS	

Academic year 2025/2026

DFC.205 Computational approaches in high-energy physics

1. Study program

University of Bucharest
Faculty of Physics
Theoretical Physics, Mathematics, Optics, Plasma and Lasers
Fizică/Physics
Master
Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Computational approaches in high-energy physics		
2.2. Teacher			
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation exam 2.7.Classification		

3. Total estimated time

3.1. Hours per week43.2. Lectures23.3. Tutorials/Practicals/Projects0/2/03.4. Total hours per semester563.5. Lectures283.6. Tutorials/Practicals/Projects0/28/0Distribution of estimated time for studyLearning by using one's own course notes, manuals, lecture notes, bibliography7Research in library, study of electronic resources, field research6Preparation for practicals/tutorials/projects/reports/homework6Tutorat0Other activities03.7. Total hours of individual study193.8. Total hours per semester753.9. ECTS3	or rotal estimated time					
Distribution of estimated time for study Learning by using one's own course notes, manuals, lecture notes, bibliography Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 6 Tutorat 0 Other activities 3.7. Total hours of individual study 19 3.8. Total hours per semester	3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	0/2/0
Learning by using one's own course notes, manuals, lecture notes, bibliography7Research in library, study of electronic resources, field research6Preparation for practicals/tutorials/projects/reports/homework6Tutorat0Other activities03.7. Total hours of individual study193.8. Total hours per semester75	3.4. Total hours per semester	56	3.5. Lectures	28	3.6. Tutorials/Practicals/Projects	0/28/0
Research in library, study of electronic resources, field research Preparation for practicals/tutorials/projects/reports/homework 6 Tutorat 0 Other activities 3.7. Total hours of individual study 19 3.8. Total hours per semester 75	Distribution of estimated time	for study		,		
Preparation for practicals/tutorials/projects/reports/homework 6 Tutorat 0 Other activities 0 3.7. Total hours of individual study 19 3.8. Total hours per semester 75	Learning by using one's own o	ourse notes,	, manuals, lectur	e notes, bibl	iography	7
Tutorat 0 Other activities 0 3.7. Total hours of individual study 19 3.8. Total hours per semester 75	Research in library, study of el	lectronic res	ources, field rese	earch		6
Other activities03.7. Total hours of individual study193.8. Total hours per semester75	Preparation for practicals/tutorials/projects/reports/homework					6
3.7. Total hours of individual study193.8. Total hours per semester75	Tutorat					0
3.8. Total hours per semester 75	Other activities					0
	3.7. Total hours of individual study				19	
3.9. ECTS 3	3.8. Total hours per semester				75	
	3					

4. Prerequisites (if necessary)

	4.1. curriculum Algebra, Analysis, Quantum mechanics	
4.2. competences Knowledge about: mechanics, solving differential equations		Knowledge about: mechanics, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions. R6. The student/graduate integrates knowledge across disciplines to address complex physical problems.
Skills	R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment. R6. Connects physics with related scientific and engineering domains.

Responsibility	R3. Takes responsibility for applying suitable research methods.
and autonomy	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
Computational methods in nuclear structure:	Systematic exposition -	10 Hours
algorithms for nuclear models, numerical solutions	lecture. Examples	
for the study of nuclear matter properties in Hartree-		
Fock theory with pairing interaction, numerical		
approaches in RPA theory for collective nuclear		
response.		
Computational methods for nuclear reactions	Systematic exposition -	9 Hours
description.	lecture. Examples	
Numerical methods for matter structure	Systematic exposition -	9 Hours
investigation. Deep inelastic scattering. Hadron-	lecture. Examples	
hadron scattering.		

References:

- 1. K. Langanke, J.A. Maruhn, S.E. Koonin, Computational Nuclear Physics, vol 1 and 2, Springer-Verlag, 1991
- 2. R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics, Cambridge University Press, 2003

7.3 Practicals	Teaching techniques	Observations
Numerical applications to collective geometric	Problem solving	7 Hours
model study and to interacting boson approximation		
study.		
Numerical simulations for relativistic kinematics	Problem solving	7 Hours
and cross-sections for elementary particles		
collisions.		
Electron-proton collisions associated to HERA-	Problem solving	7 Hours
DESY experiments.		
Proton-proton collisions associated to LHC-CERN	Problem solving	7 Hours
experiments.		
References:		

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment criteria	Assessment methods	Weight în final mark
Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
Practical	- Ability to use specific problem solving methods	Homeworks	40%
Minimal requirements for passing the exam	At least 50% of exam score and of homework	S.	

Date,

Teacher's name and signature,

13.07.2025

Date of approval

15.07.2025

Practicals/Tutorials/Project instructor(s), name and signature

Head of department name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.206 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	1 2.6. Type of evaluation verificare 2.7. Classification

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own c	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of el	lectronic res	ources, field rese	earch		6
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				25	
3.8. Total hours per semester				25	
3.9. ECTS					1

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate acquires civic competences.
Skills	R10. The student/graduate improves communication skills.
Responsibility	R10. Shows spirit of initiative and entrepreneurship.
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

7. Assessment					
	Activity type	Assessment criteria	Assessment methods	Weight în	
				final mark	

Minimal
requirements
for passing
the exam

Date, Teacher's

name and signature,

 $Practicals/Tutorials/Project\ instructor(s),$

name and signature

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

13.07.2025

Academic year 2025/2026

DFC.211 Extensions of the standard model of elementary particles

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Extensions of the standard model of elementary particles		
2.2. Teacher			
2.3. Tutorials/Practicals instructor(s)			
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7. Classification		

3. Total estimated time

5. Iour commute mine			I		
3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study				
Learning by using one's own c	ourse notes	, manuals, lectur	re notes, bi	bliography	11
Research in library, study of electronic resources, field research					10
Preparation for practicals/tutorials/projects/reports/homework					10
Tutorat					0
Other activities					4
3.7. Total hours of individual study					35
3.8. Total hours per semester					75
3.9. ECTS					3

4. Prerequisites (if necessary)

-	
4.1. curriculum	Quantum field theory, Statistical mechanics, Theory of relativity, Nuclear physics
4.2. competences	Knowledge about: electrodynamics, quantum mechanics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for tutorials/practicals	

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their applications. R2. The student/graduate derives and applies mathematical models to describe physical systems. R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical methods. R4. The student/graduate solves problems in theoretical and computational physics with modern tools. R5. The student/graduate critically evaluates scientific results and formulates reliable conclusions. R6. The student/graduate integrates knowledge across disciplines to address complex physical
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics. R2. Applies mathematical methods for modeling and solving physics problems. R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software. R5. Evaluates scientific literature and data with critical judgment. R6. Connects physics with related scientific and engineering domains.

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.
	R5. Performs independent investigations with critical awareness.
	R6. Integrates interdisciplinary approaches in research tasks.

7.1 Lecture [chapters]	Teaching techniques	Observations
The open questions from the standard model	Systematic exposition -	2 Hours
	lecture. Examples	
Hierarchy problem. Supersymmetries (SUSY).	Systematic exposition -	5 Hours
SUSY Algebra and SUSY Group.	lecture. Examples	
Superfields formulation. Irreducible representation	Systematic exposition -	5 Hours
of SUSY. Chiral superfields and vector superfields.	lecture. Examples	
Spontaneous SUSY breaking	Systematic exposition -	4 Hours
	lecture. Examples	
Extradimensions	Systematic exposition -	4 Hours
	lecture. Examples	

References:

- 1. S. Weinberg, The quantum theory of fields, Vol. III Cambridge University Press, 2005.
- 2. T. Morii, C. S. Lim and S. N. Mukherjee, The physics of Standard Model and beyond. World Scientific 2005

7.2 Tutorials	Teaching techniques	Observations
Aspects of grand unification theories (GUT).	Problem solving	4 Hours
Magnetic monopoles.		
Construction of supersymmetric Lagrangians.	Problem solving	4 Hours
The Minimal Supersymmetric Standard Model	Problem solving	4 Hours
Composite Higgs models: Technicolor, Higgs as	Problem solving	4 Hours
Pseudo-Goldstone boson, LHC signatures		
The role of string theories	Problem solving	4 Hours

References:

- 1. S. Weinberg, The quantum theory of fields, Vol. III Cambridge University Press, 2005.
- 2. H. Georgi, "The Future Of Grand Unification", Prog. Theor. Phys. Suppl. 170 (2007)
- 3. S. P. Martin, "A Supersymmetry Primer", arXiv:hep-ph/9709356.
- 4. R. Rattazzi, "Cargese lectures on extra dimensions", arXiv:hep-ph/0607055.
- 5. Barton Zwiebach, A first course in string theory, Cambridge University Press, 2009

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

Activity type	Assessment criteria	Assessment methods	Weight în	
			final mark	
Lecture	- Clarity and coherence of	Written test and oral	60%	
	exposition	examination		
	- Correct use of the methods/			
	physical models			
	- The ability to give specific			
	examples			
Tutorial	- Ability to use specific problem	Homeworks	40%	
	solving methods			

Minimal At least 50% of exam score and of homeworks. requirements for passing the exam

Practicals/Tutorials/Project instructor(s), Date, Teacher's name and signature, name and signature

13.07.2025

Date of approval Head of department

name and signature

15.07.2025 Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.212 Introduction to string theory

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Introduction to string theory
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation exam 2.7.Classification

3. Total estimated time

3.1. Hours per week	4	3.2. Lectures	2	3.3. Tutorials/Practicals/Projects	2/0/0
3.4. Total hours per semester	40	3.5. Lectures	20	3.6. Tutorials/Practicals/Projects	20/0/0
Distribution of estimated time	for study	1	I		
Learning by using one's own c	ourse notes.	manuals, lectur	e notes, bibl	iography	30
Research in library, study of electronic resources, field research					15
Preparation for practicals/tutorials/projects/reports/homework					15
Tutorat					0
Other activities				0	
3.7. Total hours of individual study				60	
3.8. Total hours per semester				100	
3.9. ECTS				4	

4. Prerequisites (if necessary)

4.1. curriculum Special Relativity and Quantum Mechanics		Special Relativity and Quantum Mechanics
	4.2. competences	Knowledge about: algebra, differential geometry, solving differential equations

5. Conditions/Infrastructure (if necessary)

or conditions, mirabil detail (in incressury)	
5.1. for lecture	videoprojector
5.2. for tutorials/practicals	videoprojector

Knowledge	R1. The student/graduate explains fundamental and advanced laws of physics and their				
	applications.				
	R2. The student/graduate derives and applies mathematical models to describe physical systems.				
	R3. The student/graduate selects and uses appropriate analytical, numerical, and statistical				
	methods.				
	R4. The student/graduate solves problems in theoretical and computational physics with modern				
	tools.				
C1-:11-	D1 Has advanced uninciples of alsocial acceptant and statistical physics				
Skills	R1. Uses advanced principles of classical, quantum, and statistical physics.				
	R2. Applies mathematical methods for modeling and solving physics problems.				
	D0 E 1				
	R3. Employs computational and numerical techniques for analysis and simulation.				
	R3. Employs computational and numerical techniques for analysis and simulation. R4. Solves theoretical and applied problems using specialized software.				

Responsibility	R1. Presents scientific work clearly to both expert and general audiences.
and autonomy	R2. Manages independent and collaborative research projects effectively.
	R3. Takes responsibility for applying suitable research methods.
	R4. Organizes and interprets data rigorously and efficiently.

7.1 Lecture [chapters]	Teaching techniques	Observations
Supersymmetry and supergravity - brief introduction. Intuitive	Systematic exposition -	4 Hours
things about String Theory.	lecture. Examples.	
Electromagnetism and Gravitation in higher dimensions. The	Systematic exposition -	2 Hours
relativistic point particle. Relativistic strings. Nambu-Goto string	lecture. Examples.	
action. Polyakov action.		
More on Gravitation in higher dimensions. Significance of the	Systematic exposition -	2 Hours
equations of motion of the relativistic string. Symmetries of the	lecture. Examples.	
worldsheet.		
Relativistic quantum open strings. Strings as harmonic oscillators	Systematic exposition -	2 Hours
with transverse Virasoro operators. Constructing the space state;	lecture. Examples.	
elements of string field theory.		
Relativistic quantum closed strings. Closed string Virasoro	Systematic exposition -	2 Hours
operators. Closed string space state. Graviton states. The dilaton	lecture. Examples.	
and the Kalb-Ramond field.		
Dp- branes. Strings between parallel Dp and Dq branes. Inter-	Systematic exposition -	2 Hours
secting D6-branes.	lecture. Examples.	
String thermodynamics and black holes. Hagedorn temperature.	Systematic exposition -	2 Hours
String partition function. Black holes and entropy. Counting	lecture. Examples.	
microstates of black holes.		
T duality of closed string. Left and Right movers. Spectrum	Systematic exposition -	1 Hour
of the compactified string. T duality as a full quantum symmetry.	lecture. Examples.	
T duality of the open string. Wilson lines.		
Interacting open string and Riemann surfaces. Moduli spaces	Systematic exposition -	1 Hour
of Riemann surfaces. String worldsheets as Riemann surfaces.	lecture. Examples.	
Veneziano amplitude.		
Type I and Type II superstrings. Ramond and Neveu-Schwarz	Systematic exposition -	2 Hours
sectors. Modular invariance	lecture. Examples.	

References:

Barton Zwiebach: "A first course in String Theory"

J. Polchinski: "String Theory: Superstring theory and beyond", volume II

7.2 Tutorials	Teaching techniques	Observations
Classical non-relativistic strings. Elements of Special Relativity.		4 Hours
Lightcone coordinates.		
Light cone classical relativistic strings. Mode expansions.		4 Hours
Transverse Virasoro modes. Review of relativistic quantum point		
particle.		
The string and D-branes charge. The Standard Model derived		8 Hours
from String Theory.		
Interacting open string and Riemann surfaces. Moduli spaces		4 Hours
of Riemann surfaces. String worldsheets as Riemann surfaces.		
Veneziano amplitude.		

References:

Barton Zwiebach: "A first course in String Theory"

J. Polchinski: "String Theory: Superstring theory and beyond", volume II

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

9. Assessment

Activity type	Assessment criteria	Assessment methods	Weight în
			final mark
Lecture	- Clarity and coherence of	written test	60%
	exposition		
	- Correct use of the methods/		
	physical models		
	- The ability to give specific		
	examples		
Tutorial	- Ability to use specific problem	homeworks	40%
	solving methods		
Minimal	At least 50% of exam score and of homeworks.		
requirements			
for passing			
the exam			

Date, Teacher's Practicals/Tutorials/Project instructor(s), name and signature, name and signature

13.07.2025

15.07.2025

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

Academic year 2025/2026 DFC.213 Volunteering

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and Lasers
1.4. Field of study	Fizică/Physics
1.5. Course of study	Master
1.6. Study program	Theoretical and Computational Physics

2. Course unit

2.1. Course unit title	Volunteering
2.2. Teacher	
2.3. Tutorials/Practicals instructor(s)	
2.4 Year of study 2 2.5. Semester	2 2.6. Type of evaluation verificare 2.7.Classification

3. Total estimated time

3.1. Hours per week	0	3.2. Lectures	0	3.3. Tutorials/Practicals/Projects	0/0/0
3.4. Total hours per semester	0	3.5. Lectures	0	3.6. Tutorials/Practicals/Projects	0/0/0
Distribution of estimated time	for study				
Learning by using one's own o	course notes	, manuals, lectur	e notes, bibl	iography	13
Research in library, study of electronic resources, field research				6	
Preparation for practicals/tutorials/projects/reports/homework				6	
Tutorat				0	
Other activities				0	
3.7. Total hours of individual study				25	
3.8. Total hours per semester				25	
3.9. ECTS				1	

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
5.1. for lecture	
5.2. for tutorials/practicals	

6. Learning outcomes

Knowledge	R10. The student/graduate acquires civic competences.
Skills	R10. The student/graduate improves communication skills.
Responsibility	R10. Shows spirit of initiative and entrepreneurship.
and autonomy	

7. Contents

8. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program

7. Assessment					
	Activity type	Assessment criteria	Assessment methods	Weight i	ìn
				final mark	

Minimal	
requireme	ents
for pass	sing
the exam	

Date, Teacher's

name and signature,

 $Practicals/Tutorials/Project\ instructor(s),$

name and signature

Date of approval Head of department

name and signature Lect. dr. Rozana ZUS

15.07.2025

13.07.2025