COURSE SHEETS

Master study program	PHYSICS OF ADVANCED MATERIALS AND NANOSTRUCTURES / FIZICA MATERIALELOR AVANSATE ȘI NANOSTRUCTURI
Academic field	PHYSICS
Faculty	FACULTY OF PHYSICS
Duration	2 years (4 semesters)
Type of study	full-time (IF)
full-time(IF)/ part-time (IFR)/ distance-learning (ID)	
Accredited: 2013 Revised: 2019 Applies begining with: autu	mn 2020

Table of Contents

COURSE SHEETS1
I. Compulsory course units
DI.101 Quantum Statistical Physics3
DI.102 Condensed Matter Physics7
DI.103 Group theory with applications in physics11
DI.104 Experimental methods in Physics15
DI.106 Research activity19
DI.107 Materials characterization techniques22
DI.108 Magnetism. Spintronics26
DI.109 Organic semiconductors and Applications30
DI.110 Preparation methods for nanomaterials34
DI.112 Research activity
DI.203 Nanostructures for electronics and optoelectronics41

	DI.205 Research activity	45
	DI.206 Physics of liquid crystals and polymeric materials. Applications	48
	DI.208 Research activity	52
	DI.209 Finalization of master thesis	55
II.	Elective course units	58
	DO.111.1 Physics of mesoscopic systems	58
	DO.111.2 Transport phenomena in disordered materials	62
	DO.111.3 Linear transport theory	66
	DO.201.1 Nonlinear Optics	69
	DO.201.2 Physics of dielectric materials	73
	DO.202.1 Computational methods for electronic structures of condensed systems	76
	DO.202.2 Advanced methods in statistical physics	80
	DO.207.2 Physics of Semiconductor Devices	84
	DO.204.2 Electrical and optical characterization of semiconductors	88
	DO.207.1 Special electronic and opto-electronic devices	93
	DO.207.2 Physics and Technology of Thin Films	97
Ш	Optional course units	101
	DFC.113 Phase transitions in condensed matter	101
	DFC.114 Interaction of laser radiation with matter	105
	DFC.210 Computational methods in modern physics	108

I. Compulsory course units

DI.101 Quantum Statistical Physics

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Department of Theoretical Physics, Mathematics, Optics,	
	Plasma and Lasers	
1.4. Field of study	Physics	
1.5. Course of study	Master of Science	
1.6. Study program	Theoretical and Computational Physics (in English)	
1.7. Study mode	Full-time study	

2. Course unit

2.1. Course unit	itle	Quantum Statistical Physics							
2.2. Teacher			Prof. Dr. Virgil	Baran					
2.3. Tutorials/Practicals instructor(s) Lect. Dr. Victor Dinu									
2.4. Year of		2.5.		2.6	. Type of		2.7. Type	Content ¹⁾	DA
study	Ι	Semester	1	eva	aluation	Е	of course		
			unit						
							Type ²⁾	DI	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	
3.3. Total hours of individual study	90				
3.4. Total hours per semester	150				

5.4. Total nouis per semester	120
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
	Physics
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

or opecine comp	etences acquirea			
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use			
competences	of the concepts of quantum statistical physics			
	 Solving problems of physics under given conditions 			
	• Use of the physical principles and laws for solving theoretical or practical problems with			
	qualified tutoring			
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of			
	many-body systems at finite temperature			
	Ability to use this knowledge in various branches of physics			
Transversal	Efficient use of sources of information and communication resources and training assis-			
competences	tance in a foreign language			
	• Efficient and responsible implementation of professional tasks, with observance of the			
	laws, ethics and deontology.			

7. Course objectives

7. Course objectives		
7.1. General objective	Understanding the fundamental aspects related to the study of quantum	
	statistical physics	
7.2. Specific objectives	Assimilation of formalism of quantum statistical theory: concepts,	
	methods of statistical ensambles, quantum distributions.	
	Explaining the peculiar fenomena of quantum domain, which have no	
	classical analogue.	
	Acquire the skills to describe and calculate the physical properties of	
	quantum systems involved in different physical conditions.	

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Quantum states. Microstates and macrostates of a quantum system. Statistical (density) operator: definition and properties. Time evolution.	Systematic exposition - lecture. Examples	2 hours
Quantum entropy. Boltzmann-von Neumann formula. Physical interpretation. Principle of maximum entropy. Equilibrium distributions. Statistical operator in equilibrium. Boltzmann- Gibbs formula.	Systematic exposition - lecture. Examples	4 hours
Partition functions: definition and properties. Entropy in thermodynamic equilibrium, natural variables. Equilibrium statistical ensembles. Ensemble averages. Canonical, grand-canonical and microcanonical ensembles.	Systematic exposition - lecture. Examples	4 hours
The indistinguishability of quantum particles. Occupations number representation. Pauli principle. Applications.	Systematic exposition - lecture. Examples	6 hours
Grand-canonical partition functions for systems of independent fermions. Fermi-Dirac statistics. Applications.	Systematic exposition - lecture. Examples	2 hours
Grand-canonical partition functions for systems of independent bosons. Bose-Einstein statistics. Applications.	Systematic exposition - lecture. Examples	2 hours

Equilibrium radiation, Planck law. The black-body radiation. Applications.	Systematic exposition - lecture. Examples	4 hours
Quantum liquids. Helium three. Helium four and	Systematic exposition -	4 hours
Bose-Einstein condensation.	lecture. Examples	4 hours
Bibliography:		•

Bibliography:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică
- 3. K. Huang, Statistical Mechanics, John Wiley & sons, 1987

4. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
The statistical thermodynamics of the ideal fermionic gas. White dwarf stars. Neutron stars.	Problem solving	6 hours
The statistical thermodynamics of the ideal bosonic gas.	Problem solving	6 hours
Statistical mechanics of lattice vibrations. Phonons. Debye model.	Problem solving	4 hours
Heisenberg model and applications.	Problem solving	4 hours
Landau two-fluids model. Maxon-roton spectrum.	Problem solving	4 hours
Linear response. Fluctuation-dissipation theorem.	Problem solving	4 hours
Bibliography:		

1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006

2. D. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, IOP 1999.

3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment	t
----------------	---

Date 10.06.2019

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%
10.6. Minimal requirement	nts for passing the exam		
Requirements for mark 5 At least 50% of exam score			

Teacher's name an	d signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
Prof. dr. Virgil Ba	an	Lect. dr. Victor Dinu

Date of approval 10.06.2019

Head of Department

Prof.dr. Virgil Baran

DI.102 Condensed Matter Physics

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title		С	Condensed Matter Physics						
2.2. Teacher			Prof. dr. Daniela Dragoman						
2.3. Tutorials instructor(s)		Lect. dr. Sorina	ı Iftim	ie					
2.4. Practicals in	structor((s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	1	evalı	uation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study			·	hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			30		
3.2.2. Research in library, study of electronic resources, field research			30		
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			30		
3.2.4. Examination			4		
3.2.5. Other activities					
2.2. Total have after dividual atuda					

3.3	3. Total hours of individual study	90
3.4	4. Total hours per semester	150
3.5	5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics
4.2. competences	Computational physics abilities

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

Professional	4. Identification and adequate use of the specific laws and concepts of condensed
competencies	matter physics in a given context
	5. Solving physics problems in given conditions
	6. Creative use of acquired knowledge for understanding and modelling of physical processes and properties of condensed matter
	7. Analysis and communication of scientific data, communication for physics popularisation.
Transversal	
competencies	8. Efficient use of scientific information and communication resources for
	professional formation in English.
	9. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Introduction and analysis of the specific physical processes in condensed
	matter
7.2. Specific objectives	Study of transport phenomena and of the associated scattering
	mechanisms.
	Highlighting at each chapter the applications of the studied phenomena
	and some problems designed to understand the specific phenomena and to
	stimulate the creative and critical thinking for solving practical issues.

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: kinetic Bltzmann equation; relaxation time approximation; scattering mechanisms	Systematic exposition - lecture. Examples.	2 hours
Scattering of charge carriers on ionized and neutral impurities. Relaxation time calculation	Systematic exposition - lecture. Examples.	4 hours
Scattering of charge carriers on phonons in nonpolar and polar crystals. Relaxation time calculation	Systematic exposition - lecture. Examples.	4 hours
Electrical resistivity of metals, alloys and semiconductors. Dependencies on temperature and concentraion of impurities/defects	Systematic exposition - lecture. Examples.	2 hours
Fundamental transport coefficients. Thermal conductivity of conductors. Lorentz number. Thermal conductivity of isolators	Systematic exposition - lecture. Examples.	4 hours
Thermoelectic effects. Materials' figure of merit	Systematic exposition - lecture. Examples.	2 hours
Onsager relations. Thermo- and galvanomagnetic effects. Spin effects. Spin-orbit coupling	Systematic exposition - lecture. Examples.	4 hours
Dielectric properties of the electron gas. Plasmons	Systematic exposition - lecture. Examples.	2 hours
Electron-electron interactions. Fermi liquid theory. Hubbard model	Systematic exposition - lecture. Examples.	2 hours
Polaritons. Electron-phonon interactions. Polarons	Systematic exposition - lecture. Examples.	2 hours

References:

- 5. Yu. M. Galperin, Introduction to Modern Solid State Physics, Lecture notes https://folk.uio.no/yurig/fys448/f448pdf.pdf
- 6. C. Kittel, Introduction to Solid State Physics, 8th Ed., 2005, Wiley
- 7. N.W. Ashcroft, N.D. Mermin, *Solid State Physics*, Saunders College, 1976.
- 8. I. Licea, Fizica stării solide, partea I, Universitatea București 1991
- **9.** D. Dragoman, Lecture notes

D. Drugomun, Eccure notes		
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Scattering of charge carriers on ionized impurities.	Exposition. Guided work	2 hours
Classical model. Relaxation time calculation	-	
Solutions of the kinetic Boltzmann equation in different	Exposition. Guided work	4 hours
conditions of nonequilibrium. Moments of the kinetic		
Boltzmann equation		
Solutions of the kinetic Boltzmann equation in	Exposition. Guided work	4 hours
ambipolar conductors in different conditions of	-	
nonequilibrium		
Charge transport in low-dimensional conductors	Exposition. Guided work	4 hours
Thermoelectric effect. Mott formula. Influence of	Exposition. Guided work	4 hours
dimensionality		
Heat transport. Fourier versus Boltzmann equation for	Exposition. Guided work	4 hours
phonons	-	
Spin-orbit coupling. Rashba and Dresselhaus effects	Exposition. Guided work	4 hours
Bulk/volume plasmons and surface plasmon polaritons	Exposition. Guided work	2 hours
Bibliography:	· •	
1 C Kittel Introduction to Solid State Physics 8th	Ed 2005 Wiley	

- 1. C. Kittel, Introduction to Solid State Physics, 8th Ed., 2005, Wiley
- 2. N.W. Ashcroft, N.D. Mermin, *Solid State Physics*, Saunders College, 1976.
- 3. Yu. M. Galperin, Introduction to Modern Solid State Physics, Lecture notes https://folk.uio.no/yurig/fys448/f448pdf.pdf

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations	
	Guided practical work	4 ore	
8.4. Research project [if applicable]	Teaching and learning techniques	Observations	
Bibliography:			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is similar to that of other courses taught at Romanian (Univ. Babeş-Bolyai, Cluj) and foreign (Berkeley University, USA, University of Sheffield, UK, University of Oslo) universities, and is designed such that the student develops abilities of modeling the charge, heat and/or spin transport in condensed matter, and the interactions of solid materials with the electromagnetic field, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	- Clarity, coherence and concision of exposition;	Written exam	67%

	- Correct use of physical models and of specific mathematical methods;		
	- Ability to exemplify		
10.5.1. Tutorials	- Use of specific physical and mathematical methods for solving a given problem;	Written exam	33%
10.5.2. Practicals			
10.5.3. Project [if applicable]			
10.6. Minimal requirem	nents for passing the exam		
Requirements for mar	k 5 (10 points scale)		
	cts indicated as required for obtaining m	ark 5.	

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Daniela Dragoman	Lect. dr. Sorina Iftimie
Date of approval		d of department,

10.06.2019

Conf. dr. Petrică Cristea

DI.103 Group theory with applications in physics

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title		Gi	Group theory with applications in physics						
2.2. Teacher					Lect. dr. Victor	Dinu			
2.3. Tutorials ins	structor(s	5)			Lect. dr. Victor	Dinu			
2.4. Practicals in	structor((s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	1	evalı	lation	Е	of course	Type ²⁾	DI
							unit		

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

````	· · ·		-		
3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	0/2
3.2. Total hours per semester					
-	56	Lecture	28	Practicals/Tutorials	0/28
Distribution of estimated time for stu	dy				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			30		
3.2.2. Research in library, study of el	ectron	ic resources, field resea	ırch		25
3.2.3. Preparation for practicals/tutor	ials/pro	ojects/reports/homewor	rks		35
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study	00				

D 4 Total have non compater 150	
3.4. Total hours per semester150	)
3.5. ECTS 6	

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Linear algebra, Quantum mechanics
4.2. competences	Knowledge about: mechanics, atomic physics, solid state physics, nuclear physics

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

#### 6. Specific competences acquired

Professional	4. Ability to use knowledge on group theory in various branches of physics
competences	5. Ability of analyse and interpret experimental data, formulate rigorous theoretical
	conclusions.
	6. Ability to employ mathematical models based on symmetries to describe the physical
	phenomena.
	7. Ability to evidence the relation between irreducible representations and invariant
	subspaces of Hilbert space ; evidence the connection between energy spectrum and
	irreducible representations.
Transversal	Efficient use of scientific information resources and of communication and of resources
competences	for professional formation in English.
_	Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

#### 7. Course objectives

7. Gourse objectives					
7.1. General objective	Understanding the fundamental aspects related to the study of symmetries				
	in physics. Expose the basic properties of groups and their matrix				
	representations.				
	The study of the role of group theory in quantum mechanics.				
7.2. Specific objectives	Assimilation of the formalism of group theory: concepts, methods,				
	representations.				
	Acquire the skills to describe and calculate the physical properties of				
	physicsl systems based on symmetries.				

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Introductory notions: symmetries of a physical system, the role of group theory in physics, groups clasification.	Systematic exposition - lecture. Examples	1 hours
Group axioms, group multiplication table, subgroups,mappings of groups, direct product of groups.	Systematic exposition - lecture. Examples	1 hours
Conjugate elements, equivalence classes, invariant subgroups, cosets, quotient group	Systematic exposition - lecture. Examples	1 hours
Matrix representation of a group, equivalent representations, irreducible representation. Schur lemma's.	Systematic exposition - lecture. Examples	1 hours
Orthogonality relations for irreducible representations of a finite group, inequivalent representations for finite groups, characters and their orthogonality relations, character table.	Systematic exposition - lecture. Examples	2 hours
Group theory and quantum mechanics. From degeneracy to group representations: classification of the eigenvalues and of the eigenstates of energy according to the irreducible representations of symmetry group. Applications.	Systematic exposition - lecture. Examples	2 hours
Discrete symmetries. Rotation group in quantum mechanics. Tensor operators. Wigner-Eckart theorem. Aplications in atomic and nuclear physics.	Systematic exposition - lecture. Examples	4 hours

Basis functions of irreducible representations.	Systematic exposition -	2 hours
Product of representations	lecture. Examples	2 110410
Curie-Neumann symmetry principle. Fundamental	Systematic exposition -	2 hours
theorem of symmetry. Applications	lecture. Examples	2 110015
Symmetry of material tensors. 2-nd and 3-rd order	Systematic exposition -	4 hours
tensors.	lecture. Examples	4 110015
Space groups. Group of the wave vector.	Systematic exposition -	4 hours
Irreducible representations of space groups.	lecture. Examples	4 110015
Energy band models based on symmetry	Systematic exposition -	4 hours
	lecture. Examples	4 11001'S

Bibliography:

10. J.F. Corwell, Group theory in physics. An Introduction. Academic Press, 1997.

11. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017

12. W.K. Tung, Group theory in physics, World Scientific, 1985

13.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Basic group theory. Applications.	Problem solving	1 hours
Discrete groups representations.	Problem solving	1 hours
Permutation groups. Dihedral groups.	Problem solving	2 hours
Group theory and harmonic motion.	Problem solving	2 hours
Unitary representations for rotations, Wigner matrices, Spherical tensors.	Problem solving	4 hours
Discrete translations.	Problem solving	2 hours
Symmetry of material tensors. Applications	Problem solving	4 hours
Applications to lattice vibrations	Problem solving	6 hours
k·p perturbation theory. Applications	Problem solving	6 hours

Bibliography:

**10.** A. Zee, *Group theory in a nutshell for physicist*, Princeton University Press, 2017

11. W.K. Tung, *Group theory in physics: Problems and solutions*, World Scientific, 1991

12. S. Sternberg, Group theory and physics, Cambridge University Press, 1994

# 9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

First course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

#### 10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	<ul> <li>Clarity and coherence of exposition</li> <li>Correct use of the methods/ physical models</li> <li>The ability to give specific examples</li> </ul>	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem	Homeworks	40%

	solving methods					
10.6. Minimal requirements for passing the exam						
Requirements for mark 5	(10 points scale)					
At least 50% of exam score and of homeworks.						

Date 10.06.2019 Teacher's name and signature

Lect. dr. Victor Dinu

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect. dr. Victor Dinu

Date of approval 10.06.2019

Head of Department

Prof.dr. Virgil Băran

## **DI.104** Experimental methods in Physics

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title <b>Experiment</b>					al methods în P	hysics			
2.2. Teacher			Conf. dr. Vasile Bercu						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)						lexandru Jipa, Lect oma, Conf. dr. Cris			
2.5. Year of study	1	2.6. Semester	2	2.7. Type of evaluation		E	2.8. Type of course unit	Content ¹⁾ Type ²⁾	DA DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution: lecture	2	Tutorials/Practicals	0/3
3.2. Total hours per semester	70	distribution: lecture	28	Tutorials/Practicals	0/42
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					26
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study	76				

3.4. Total hours per semester	150
3.5. ECTS	6

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electricitate și magnetism, Optică, Fizica solidului I, Electrodinamică, Mecanică cuantică
4.2. competences	8. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	- research infrastructure for morphological, optical, magnetic and
_	microstructural characterizations

<b>13.</b> Use of methods for morphological, optical, magnetic and microstructural
characterizations.
<b>14.</b> Knowledge of physics of interaction of radiation with matter
<b>15.</b> Creative use of acquired physical knowledge related to morphological, optical, magnetic and microstructural characterizations.
<ul><li><b>16.</b> Analysis and communication of scientific data, communication for physics popularisation.</li></ul>
<b>17.</b> Use of specific software tools.
<ul> <li>18. Efficient use of scientific information resources and of communication and of resources for professional formation in English.</li> <li>19. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.</li> </ul>

#### 7. Course objectives

i course objectives	
7.1. General objective	Introduction to techniques for microstructural, morphological, magnetic
	and optical characterizations of materials
7.2. Specific objectives	Study of magnetic properties of materials
	AFM studies of surface morphology
	Measuring optical coefficients of thin films
	Micro-structural studies based on ion beams
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

8.1. Lecture [chapters]	Teaching techniques	Observations
Atomic force microscopy (AFM) – physical principles. Working modes (non-contact, contact). Characterization of surface morphology. Magnetic force microscopy (MFM), Scanning tunneling microscopy (STM). Applications	Systematic exposition - lecture. Examples.	6 hours
Electron spin resonance. Investigation of defects în semiconductors.	Systematic exposition - lecture. Examples.	6 hours
Ellipsometry. Physical principles. Optical coefficients of thin films.	Systematic exposition - lecture. Examples.	6 hours
Magnetic propeties of condensed systems. Vibrating Sample Magnetometer and measurement of magnetic susceptibility at room temperature. Temperature effects on magnetic properties.	Systematic exposition - lecture. Examples.	4 hours
Characterization techniques of condensed systems using accelerated ion beams (RBS, ERDA, PIXE). Applications.	Systematic exposition - lecture. Examples.	6 hours
References: <b>14.</b> M. Nastasi, J.W. Mayer, Y. Wang, <i>Ion beam and</i>	alysis – Fundamentals and application	ons (CRC Press,

Boca Raton, USA, 2015).

- 15. M. Fox, Optical properties of solids (Oxford University Press, Oxford, UK, 2001).
- **16.** C. Necula, *Determinarea proprietăților magnetice ale rocilor pe baza histerezisului magnetic* (Ars Docendi, București, 2017),
- 17. J.A. Weil, J.R. Bolton, *Electron paramagnetic resonance* (Wiley, New Jersey, USA, 2007)

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
AFM in contact and non-contact mode. Surface morphology characterizations	Guided practical work	6 hours
MFM experiments	Guided practical work	3 hours
Characterization of magnetic domains by FORC (First Order Reversal Curves) and Preisach diagrams, using PMC VSM 3900 system. Distribution of magnetic particles from susceptibility measurements.	Guided practical work	6 hours
Determination of blocking temperature and of the temperature dependent coercitive force.	Guided practical work	6 hours
Ellipsometric measurements. Dispersion of optical coefficients of thin films.	Guided practical work	6 hours
Electron spin resonance. Characterization of structural defects în semiconductors.	Guided practical work	6 hours
Characterization of microstructure of condensed systems using accelerated ion beams (RBS, ERDA, PIXE)	Guided practical work	9 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific examples;</li> </ul>	Written and oral exam	50%

10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;					
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	50.00%			
<b>10.5.3. Project</b> [if applicable]						
10.6. Minimal requirements for passing the exam						
<b>Requirements for mark 5 (10 points scale)</b> Correct solving of subjects indicated as required for obtaining mark 5.						

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Conf. dr. Vasile Bercu	Prof. dr. Alexandru Jipa
		Conf. dr. Vasile Bercu
		Conf. dr. Cristian Necula
		Lect. dr. Adriana Bălan
		Lect. dr. Ovidiu Toma
Date of approval		ad of department,
10.06.2019	Conf	. dr. Petrică Cristea

## DI.106 Research activity

#### 1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

#### 2. Course unit

2.1. Course title <b>Research act</b>				tivity					
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals instructor(s)			Prof. dr. Lucia	n Ion		-			
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	1	evalı	uation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/					
3.1. Hours per week in curriculum	4	distribution: lecture	0	Tutorials/Practicals	0/4	
3.2. Total hours per semester		distribution: lecture	0	Tutorials/Practicals	0/56	
Distribution of estimated time for study						
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research						
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks						
3.2.4. Examination						
3.2.5. Other activities						
3.3. Total hours of individual study						

	15
3.4. Total hours per semester	75
3.5. ECTS	3

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

o. mequiteu speen				
Professional	<b>20.</b> Creative use of acquired knowledge for preparation and characterization of			
competencies	materials and nanostructures			
_	<b>21.</b> Solving physics problems in given conditions			
	<b>22.</b> Analysis and communication of scientific data, communication for physics popularisation.			
	<b>23.</b> Use of professional software			
Transversal				
competencies	<b>24.</b> Efficient use of scientific information and communication resources for			
	professional formation in English.			
	<b>25.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.			

#### 7. Course objectives

i course objectives			
7.1. General objective	Knowledge and use of experimental or theoretical methods used in		
-	fabrication and/or characterization of materials and nanostructures		
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific		
	phenomena and to stimulate the creative and critical thinking for solving		
	practical issues.		

8.1. Lecture [chapters]	Teaching techniques	Observations	
	Systematic exposition -		
	lecture. Examples.		
References:			
18.			
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observations	
-	techniques	Observations	
	Exposition. Guided work		
Bibliography:			
9.			
	Teaching and learning		
<b>8.3. Practicals</b> [research subjects, projects]	techniques	Observations	
	Guided practical work		
Bibliografie:	- <b>-</b>		
1.			
8.4. Research project [if applicable]	Teaching and learning	Observations	
	techniques	Observations	
Experimental methods used in fabrication and/or	Guided practical work	- specific types of	
characterization of materials and nanostructures	-	activities, defined	
		by the research	
		theme chosen by	
		student	
Theoretical models for description of physical	Guided practical work	- specific types of	
properties/physical phenomena related to materials and	-	activities, defined	
nanostructures		by the research	
		theme chosen by	
		student	

Bibliography:

- to be indicated by the coordinator of the research activity

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2. Practicals			
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Knowledge of experimental techniques</li> <li>Ability to analyse scientific data</li> </ul>	Research report	100%
<b>10.6. Minimal requirement</b>	nts for passing the exam		

#### **Requirements for mark 5 (10 points scale)**

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)		
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion		
Date of approval 10.06.2019		f department, Petrică Cristea		

## DI.107 Materials characterization techniques

#### 1. Study program

<u>1. Study program</u>	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

#### 2. Course unit

2.1. Course title	Mater	ials ch	naracterization	techni	ques				
2.2. Teacher			Prof. dr. Luciar	n Ion					
2.3. Tutorials ins	structor(s	s)							
2.4. Practicals instructor(s)		Prof. dr. Lucian Ion							
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	r 2 evalu		lation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				30	
3.2.2. Research in library, study of electronic resources, field research				25	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				35	
3.2.4. Examination			4		
3.2.5. Other activities					
3.3 Total hours of individual study					

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

#### 4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics
4.2. competences	Computational physics abilities

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Research infrastructure for structural/optical characterization

Professional competencies	26. Identification and adequate use of the specific laws and concepts of condensed matter physics in a given context – knowledge of crystalline structure of (nano)materials
	<ul> <li>27. Creative use of acquired knowledge for understanding and modelling of structural and optical properties of condensed matter</li> <li>28. Solving physics problems in given conditions</li> <li>29. Analysis and communication of scientific data, communication for physics popularisation.</li> </ul>
Transversal competencies	<ul> <li>30. Efficient use of scientific information and communication resources for professional formation in English.</li> <li>31. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.</li> </ul>

#### 7. Course objectives

is of structural and optical properties of (nano)materials
of crystalline structure of materials
otion of experimental techniques for structural investigations based
tering of X-rays and thermal neutrons
of optical transitions în semiconductors
thing of specific problems designed to understand the specific
nena and to stimulate the creative and critical thinking for solving
al issues.

#### 8. Contents

<b>8.1. Lecture</b> [chapters]	Teaching techniques	Observations	
Generation and properties of X-rays	Systematic exposition -	2 hours	
Crystalline structures. Symmetry properties.	lecture. Examples. Systematic exposition -	6 hours	
Classification. Point groups. Space groups.	lecture. Examples.	0 mound	
Elastic scattering of X-rays and thermal neutrons.	Systematic exposition - 8 hou		
Structure factor. Ewald's sphere. Structure of X-ray	lecture. Examples.		
diffraction pattern			
Real crystals: size effects, structural disorder and	Systematic exposition -	4 hours	
temperature effects	lecture. Examples.		
Optical transitions în semiconductors and	Systematic exposition -	8 hours	
semiconductor nanostructures. Optical density of	lecture. Examples.		
states. Critical points. Excitons. Photoluminescence.			

#### **References:**

- **19.** P.Y. Yu, M. Cardona, *Fundamentals of semiconductors physics and materials properties* (Springer, Berlin, Germany, 2005), 3-rd ed.
- 20. M. Fox, Optical properties of solids (Oxford University Press, Oxford, UK, 2001).
- **21.** C. Giacovazzo (ed.), *Fundamentals of Crystallography* (Oxford University Press, Oxford, UK, 2002), 2-nd. ed..
- **22.** Y. Waseda, E. Matsubara, K. Shinoda, *X-ray Diffraction Crystallography* (Springer Verlag, Berlin, Germany, 2011)
- 23. L. Ion, Lecture notes

<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning techniques	Observations
------------------------------------------------	-------------------------------------	--------------

	Exposition. Guided work	
Bibliography:	, -	
10.	1	1
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Symmetry of crystalline structures. Point group. Space group.	Guided practical work	4 hours
X-ray diffraction. Determination of interplanar distances and of lattice constants. Identification of crystalline phases.	Guided practical work	4 hours
X-ray diffraction. Quantitative analysis. Williamson Hall plot. Rietveld method.	Guided practical work	4 hours
Ultrathin films. Grazing incidence X-ray diffraction.	Guided practical work	4 hours
X-ray reflectometry. Quantitative determinations (surface rugosity, thickness).	Guided practical work	4 hours
Optical transitions în direct band semiconductors. Optical properties.	Guided practical work	4 hours
Optical properties of ultrathin films	Guided practical work	4 hours
<ul> <li>Bibliografie:</li> <li>1. L. Ion, <i>Tehnici de investigare structurală și morfologice</i> laborator)</li> <li>2. P.Y. Yu, M. Cardona, <i>Fundamentals of semiconductors</i></li> </ul>		
Berlin, Germany, 2005), 3-rd ed. <b>8.4. Research project</b> [if applicable]	Teaching and learning	Observations

<b>8.4. Research project</b> [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic **communities, professional associations and employers** (in the field of the study program)

The content of this course is similar to that of other courses taught at Romanian and foreign universities, and is designed such that the student develops abilities of investigating the crystalline structure and the interactions of solid materials with the electromagnetic field, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

#### 10. Assessment

10.71350551110110		1		
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark	
10.4. Lecture	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to exemplify</li> </ul>	Written exam Homework	50% 25%	
10.5.1. Tutorials				
10.5.2. Practicals	<ul> <li>Use of structure investigation techniques-</li> <li>Ability to analyse experimental data</li> </ul>	Lab reports	25%	
<b>10.5.3. Project</b> [if applicable]				

#### 10.6. Minimal requirements for passing the exam

#### **Requirements for mark 5 (10 points scale)**

Correct solving of subjects indicated as required for obtaining mark 5.

Prof. dr. Lucian Ion

Date

Teacher's name and signature

25.05.2019

Practicals/Tutorials instructor(s) name(s) and signature(s)

Prof. dr. Lucian Ion

Date of approval 10.06.2019

Head of department, Conf. dr. Petrică Cristea

## DI.108 Magnetism. Spintronics.

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title Magnetism. S					Spintronics				
2.2. Teacher				Conf. dr. Georg	Conf. dr. George Alexandru NEMNES				
2.3. Tutorials instructor(s)				Conf. dr. Georg	Conf. dr. George Alexandru NEMNES				
2.4. Practicals instructor(s)									
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	2	evalı	uation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0	
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	28/0	
Distribution of estimated time for study						
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research						
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks						
3.2.4. Examination						
3.2.5. Other activities						
2.2. Total hours of individual study.						

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Quantum mechanics, Solid State I, Thermodynamics and statistical physics,
	Physical Electronics, Equations of mathematical physics
4.2. competences	11. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

of frequined speen						
Professional	<b>32.</b> Identification and adequate use of physics laws in a given context; identification					
competencies	and adequate use of notions and specific physics laws for magnetic materials.					
	<b>33.</b> Solving physics problems in given conditions.					
	<b>34.</b> Creative use of acquired physical knowledge to understand and to construct					
	models for physical processes and properties of magnetic materials and spintronic devices.					
	<b>35.</b> Analysis and communication of scientific data, communication for physics popularization.					
	<b>36.</b> Use and development of specific software tools.					
Transversal competencies	<ul> <li>37. Efficient use of scientific information resources and of communication and of resources for professional formation in English.</li> <li>38. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.</li> </ul>					
	the taws, canes and deontology.					

#### 7. Course objectives

7. Course objectives					
7.1. General objective	Investigation of magnetic properties of materials and spin transport in				
	electronic devices.				
7.2. Specific objectives	- Understanding the origin of the magnetism from fundamental				
	perspective.				
	- Indepth understanding of magnetic interactions.				
	- Analysis of specific spin and charge transport models.				
	- The capacity to analyze and interpret experimental data and formulate				
	rigorous theoretical conclusions.				
	- The capacity to employ mathematical and numerical models for				
	modelling the physical phenomena.				

8.1. Lecture [chapters]	Teaching techniques	Observations		
Introduction. Magnetic materials. Magnetic suceptibility. Types of magnetism.	Systematic exposition - lecture. Examples.	2 hours		
Langevin paramagnetism. Pauli paramagnetism.	Systematic exposition - lecture. Examples.	2 hours		
Langevin diamagnetism. Landaau levels. Pauli diamagnetism for free electrons.	Systematic exposition - lecture. Examples.	4 hours		
Ferromagnetism. Curie-Weiss law. Stoner criterion.	Systematic exposition -2 hourslecture. Examples.			
Exchange integral. Super-exchange and double-exchange interaction. RKKY interaction.	Systematic exposition - lecture. Examples.	on - 4 hours		
Spin glasses. Dynamical properties. Phase transitions.	Systematic exposition - lecture. Examples.	4 hours		
Giant magnetoresistance. Rashba and Dresselhaus spin-orbit interaction. Datta-Das field effect transistor.	Systematic exposition - lecture. Examples.	4 hours		
Spin relaxation mechanisms. Spin scattering on magnetic impurities. Spin filters.	Systematic exposition - lecture. Examples	4 hours		
Magnetic domains. FORC diagrams.	Systematic exposition -	2 hours		

<ul> <li>Bibliography:</li> <li>R.M. Martin, Electronic Structure: Basic Theory (Cambridge University Press, Cambridge, UK, 20 P. Mohn, <i>Magnetism in the solid state</i> (Springer, Teruya Shinjo, <i>Nanomagnetism and Spintronics</i> (</li> <li>8.3. Practicals [research subjects, projects]</li> </ul>	004) Berlin, 2002)	Observations
R.M. Martin, Electronic Structure: Basic Theory (Cambridge University Press, Cambridge, UK, 20 P. Mohn, <i>Magnetism in the solid state</i> (Springer,	004) Berlin, 2002) (Elsevier, Amsterdam, 2009)	
R.M. Martin, Electronic Structure: Basic Theory (Cambridge University Press, Cambridge, UK, 20	004)	
R.M. Martin, Electronic Structure: Basic Theory		
	and Practical Methods	
structures.		
FORC diagrams. Identification of magnetic domain	Exposition. Guided work	4 ore
Introduction to <i>ab initio</i> models.		
Charge and spin transport in magnetic quantum wires.	Exposition. Guided work	4 ore
Spin scattering in graphene nanoribbons.	Exposition. Guided work	4 ore
spin glasses.		
Ising spin models. Ferromagnets, antiferromagnets and	Exposition. Guided work	4 ore
approximation.	_	
Exchange interaction. Applications of Hartree-Fock	Exposition. Guided work	4 ore
Diamagnetic materials. Applications.	Exposition. Guided work	4 ore
Paramagnetic materials. Applications.	Exposition. Guided work	4 ore
	techniques	Observations
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning	
27. I. Munteanu, Fizica solidului (Editura Universită	ții din București, 2003)	1
Teruya Shinjo, Nanomagnetism and Spintronics		
<b>26.</b> P. Mohn, <i>Magnetism in the solid state</i> (Springer,		
(Cambridge University Press, Cambridge, UK, 20		
<b>25.</b> R.M. Martin, Electronic Structure: Basic Theory		
References: <b>24.</b> R.M. White, <i>Quantum Theory of Magnetism</i> (Spr	inger Berlin 1983)	
	*	

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	- Explicitness, coherence and concision of scientific statements;	Written and oral exam	50%

	<ul> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific</li> </ul>					
	examples;					
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%			
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	xx%			
<b>10.5.3. Project</b> [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark 5	5 (10 points scale)					
Correct solutions to indicated subjects (for mark 5) in final exam						

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)		
10.06.2019	Conf. dr. George Alexandru			
	Nemnes	Conf. dr. George Alexandru Nemnes		
Date of approval	Head o	f department,		
10.06.2019	Conf. dr. Petrică Cristea			

## **DI.109** Organic semiconductors and Applications

#### 1. Study program

University of Bucharest		
Faculty of Physics		
Electricity, Solid State Physics and Biophysics		
Physics		
Graduate/Master		
Physics of advanced materials and nanostructures (in		
English)/Physics of advanced materials and nanostructures		
Full-time study		

#### 2. Course unit

2.1. Course title		(	Organic semiconductors and applications						
2.2. Teacher			Lect. dr. Sorina Iftimie						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Lect. dr. Sorina Iftimie, Prof. dr. Ştefan Antohe						
2.5. Year of		2.6.	2.7. Type of				2.8. Type	Content ¹⁾	DS
study	1	Semester	2	evalı	lation	Е	of course unit	Type ²⁾	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study					

3.3. Total hours of individual study	90	
3.4. Total hours per semester	150	
3.5. ECTS	6	

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Quantum Mechanics, Solid State Physics 1, Electricity and Magnetism,					
	Electrodynamics					
4.2. competences	12. Understanding peculiarities of electron states in organic semiconductors					
	13. Knowledge and understanding of peculiarities of transport and optical					
	phenomena in organic semiconductors					
	14. Understanding underlying physical phenomena					
	15. Ability to analyze and understand relevant experimental data and to formulate					
	rigorous conclusions					

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practical	Experimental set-ups in Thin Films Laboratory and Nanotechnology
classes	Laboratory of Materials and Devices for Electronics and
	Optoelectronics R&D Center

I	
Professional	<b>39.</b> Identification and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for organic semiconductors.
	<b>40.</b> Solving physics problems in given conditions.
	<b>41.</b> Creative use of acquired physical knowledge to understand and to construct
	models for physical processes and properties of organic semiconductors.
	<b>42.</b> Analysis and communication of scientific data.
	<b>43.</b> Use and development of specific laboratory equipments.
Transversal	
competencies	<b>44.</b> Efficient use of scientific information resources for professional formation in
	English.
	<b>45.</b> Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

#### 7. Course objectives

<b>J</b>					
7.1. General objective	Introduction and development of organic semiconductors by physical and				
	chemical methods for electronic and optoelectronic applications				
7.2. Specific objectives	Introduction to small molecules organic semiconductors, aromatic				
	hydrocarbon, organic dyes, donor-acceptor complexes, and				
	semiconducting polymers				
	Study of intermolecular interactions in organic solids				
	Molecular orbitals, molecular excited states, band structure of molecular				
	crystals				
	Excitons in organic solids, Mott-Wannier excitons, Frenkel excitons, Le				
	Blanc's model, Katz-Rice-Chois-Jortner model				
	Transport mechanism in organic solids, anisotropy of conductivity				
	Highlighting of essential problems in understanding of specific				
	phenomena, in order to stimulate creative and critical thinking.				

8.1. Lecture [chapters]	Teaching techniques	Observations
Structural properties of organic semiconductors: correlation between chemical structure and semiconducting properties	Systematic exposition - lecture. Examples.	4 hours
Crystalline structure of organic semiconductors: structure of small molecular weight organic solids, structure of large molecular weight solids, point-like defects, diffusion in organic solids, diffusion mechanisms, methods to determine the diffusion	Systematic exposition - lecture. Examples.	
coefficient, doping of organic semiconductors		4 hours
Electron structure of organic solids: intermolecular interactions in organic solids	Systematic exposition - lecture. Examples.	4 hours
Le Blanc's model, Katz-Rice-Chois-Jortner model	Systematic exposition - lecture. Examples.	2 hours
Energy transfer in organic solids	Systematic exposition - lecture. Examples.	2 hours
Excitons: Mott-Wannier excitons, Frenkel excitons.	Systematic exposition - lecture. Examples.	2 hours

Exciton diffusion, exciton triplets, influence of lattice defects on exciton diffusion.	Systematic exposition -	
defects on exciton diffusion.	lecture. Examples.	
		2 hours
Polarons in molecular crystals.	Systematic exposition -	
	lecture. Examples.	2 hours
Charge transport in organic solids: transport mechanisms in organic solids – tunnel effect, hopping	Systematic exposition - lecture. Examples.	
mechanism	L	21
Change transment in angenia calidar transment		2 hours
Charge transport in organic solids: transport mechanisms in organic solids – band transport mechanism, activation energy, anisotropy of conductivity, influence of pressure on dark conductivity of organic solids	Systematic exposition - lecture. Examples.	
		2 hours
Resume of lecture	Systematic exposition -	_
References:	lecture. Examples.	2 hours
<ul> <li>Bucureşti, 1996)</li> <li>29. S. Antohe, Electronic and Optoelectronic Dev Organic Electronics and Photonics: Electron (American Scientific Publishers, Los Angeles, C</li> <li>30. S. Antohe, S. Iftimie, L. Hrostea, V.A. Antoh based on organic monomeric and polymeric thi 231, 2017.</li> <li>31. N.F. Mott, E.A. Davis, Electron processes in 1979).</li> <li>32. W. Helfrich, Physics and Chemistry of the Organ 33. Lecture notes available on http://solid.fizica.unit</li> <li>8.2. Tutorials [main tutorial subjects]</li> </ul>	nic Materials and Devices, H. Galifornia, USA, 2006). e, M. Girtan, A critical review of in film heterojunctions in Thin So non-crystalline materials (Clarer nic Solid State (Wiley Interscience	Singh-Nalwa (Ed. of photovoltaic cell olid Films 642, 219 ndon Press, Oxford
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Preparation methods for organic thin films	Guided practical work	4 hours
Methods to determine the thickness of organic thin films	*	2 hours
Structural characterization of organic semiconductors	Guided practical work	4 hours
Surface topography investigations of organic	•	4 hours
semiconductors by atomic force microscopy (AFM)	Guided practical work	
Morphological analysis of organic semiconductors by scanning electron microscopy (SEM)	Guided practical work	4 hours
Electrical behavior of organic semiconductors	Guided practical work	4 hours
Optical characterization of organic semiconductors	Guided practical work	4 hours
Hand-on lab test & quiz	Guided practical work Group project	2 hours
		2 110415
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
References:		

- 1. S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu and V. A. Antohe, "Fizica si tehnologia materialelor semiconductoare Lucrari practice", Ars Docendi, Universitatea din Bucuresti, 165 pages, 2016, ISBN: 978-973-558-940-0
- 2.

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

iv. Assessment	1	1				
Activity type	10.1. Assessment criteria10.2. Assessment methods		10.3. Weight în final mark			
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyze specific examples;</li> </ul>	Written exam	70%			
10.5.1. Tutorials						
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	30%			
<b>10.5.3. Project</b> [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark 5 (10 points scale)						
Correct solving of subject	s indicated as required for obtaining m	ark 5.				

Teacher(s) name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
Lect. dr. Sorina Iftimie	
	Lect. dr. Sorina Iftimie
	Prof. dr. Ştefan Antohe

Date of approval 10.06.2019

Head of department, Assoc. Prof. dr. Petrică Cristea

## **DI.110** Preparation methods for nanomaterials

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title <b>Preparation</b>					methods for na	noma	terials		
2.2. Teacher			Lect. dr. Sorina Iftimie						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Lect. dr. Sorina Iftimie, Assoc. Prof. Vlad-Andrei Antohe						
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	1 evalu		lation	Е	of course	Type ²⁾	
							unit	-51-	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				bibliography	20
3.2.2. Research in library, study of electronic resources, field research				20	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				25	
3.2.4. Examination			4		
3.2.5. Other activities					
3.3 Total hours of individual study					

3.3. Total hours of individual study	65	
3.4. Total hours per semester	125	
3.5. ECTS	5	

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Thermodynamics, Solid State Physics I, Optics		
4.2. competences	16. Knowledge of modern technologies for producing nanomaterials and		
	nanostructures		
	17. Understanding underlying physical phenomena		
	18. Ability to analyze and understand relevant experimental data and to formulate		
	rigorous conclusions		

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practical	<b>3.</b> Experimental set-ups in Thin Films Laboratory and Nanotechnology

classes	Laboratory of Materials and Devices for Electronics and
	Optoelectronics R&D Center

I	A			
Professional	<b>46.</b> Identification and adequate use of physics laws in a given context; identification			
competencies	and adequate use of notions and specific physics laws for nanostructures.			
	<b>47.</b> Solving physics problems in given conditions.			
	<b>48.</b> Creative use of acquired physical knowledge to understand and to construct			
	models for physical processes and properties of nanostructures.			
	<b>49.</b> Analysis and communication of scientific data.			
	<b>50.</b> Use and development of specific laboratory equipments.			
Transversal				
competencies <b>51.</b> Efficient use of scientific information resources for professional form				
-	English.			
	<b>52.</b> Efficient and responsible implementation of professional tasks, with observance of			
	the laws, ethics and deontology.			

#### 7. Course objectives

Introduction and development of nanostructures by physical and chemica methods for electronic and optoelectronic applications.			
			Studies of thermodynamically phenomena and processes of development
of thin films			
Study of dc/rf magnetron sputtering			
Study of thermal evaporation			
Study of pulsed laser deposition			
Study of electrochemical deposition			
Highlighting of essential problems in understanding of specific			
phenomena, in order to stimulate creative and critical thinking.			

8.1. Lecture [chapters]	Teaching techniques	Observations
Nanomaterials: relevant length scales. Specific physical properties.	Systematic exposition - lecture. Examples.	2 hours
Crystal growth models. Thermodynamic and kinetics of crystal growth.	Systematic exposition - lecture. Examples.	2 hours
Fabrication techniques. Physical principles. dc and rf magnetron sputtering thermal evaporation pulsed laser deposition electrochemical deposition spin-coating	Systematic exposition - lecture. Examples.	4 hours
Self-assembled materials at nanoscale	Systematic exposition - lecture. Examples.	2 hours
Applications to electronics and optoelectronics	Systematic exposition - lecture. Examples.	4 hours
Applications to photovoltaic devices	Systematic exposition - lecture. Examples.	2 hours
Types of nanostructures	Systematic exposition - lecture. Examples.	2 hours
Top-down fabrication techniques. Lithography.	Systematic exposition - lecture. Examples.	2 hours
Bottom-up fabrication techniques; self-assembling at	Systematic exposition -	2 hours

	lecture. Examples.	
Production of metallic and semiconductor nanowires by template based methods	Systematic exposition - lecture. Examples.	2 hours
Nanowires and nanotubes. Applications.	Systematic exposition -	
	lecture. Examples.	2 hours
Resume of lecture	Systematic exposition - lecture. Examples.	2 hours
<ul> <li>References:</li> <li>34. T. Ohji, A. Wereszczak (Eds.), <i>Nanostructured</i> 2009).</li> <li>35. C. Dups, P. Houdy, and M. Lahmani, <i>Nanosci</i> Verlag, Berlin, 2004).</li> <li>36. M. Adachi, D.J. Lockwood (Eds.), <i>Self-organi</i> 2006).</li> <li>37. M. Kohler, W. Fritzsche, <i>Nanotechnology. An I</i> New York, 2007).</li> <li>38. Lecture notes available on http://solid.fizica.unibi</li> <li>8.2. Tutorials [main tutorial subjects]</li> </ul>	materials and Nanotechnology ence. Nanotechnologies and Nar ized nanoscale materials (Spring Introduction to Nanostructuring	(Wiley, New York <i>nophysics</i> (Springe ger Verlag, Berlin
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Development of nanomaterials by dc magnetron	Guided practical work	4 hours
sputtering		
Development of nanomaterials by rf magnetron	Guided practical work	4 hours
Development of nanomaterials by rf magnetron sputtering Development of thin films by thermal vacuum	Guided practical work Guided practical work	4 hours 4 hours
	_	
Development of nanomaterials by rf magnetron sputtering Development of thin films by thermal vacuum evaporation	Guided practical work	4 hours
Development of nanomaterials by rf magnetron sputtering Development of thin films by thermal vacuum evaporation Fabrication of nanomaterials by pulsed laser deposition Fabrication of nanostructures by electrochemical	Guided practical work Guided practical work	4 hours 4 hours
Development of nanomaterials by rf magnetron sputtering Development of thin films by thermal vacuum evaporation Fabrication of nanomaterials by pulsed laser deposition Fabrication of nanostructures by electrochemical deposition	Guided practical work         Guided practical work         Guided practical work         Guided practical work	4 hours 4 hours 4 hours

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### 10. Assessment

	Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3.	
--	---------------	---------------------------	--------------------------	-------	
			Weight în final mark		
-------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------	-------------------------	--	--
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyze specific examples;</li> </ul>	Written exam	70%		
10.5.1. Tutorials					
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	30%		
<b>10.5.3. Project</b> [if applicable]					
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
Correct solving of subjects indicated as required for obtaining mark 5.					

Date	Teacher(s) name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Lect. dr. Sorina Iftimie	
		Lect. dr. Sorina Iftimie Assoc. Prof. Vlad-Andrei Antohe
Date of approval		
10.06.2019		Head of department,
	Α	ssoc. Prof. dr. Petrică Cristea

# DI.112 Research activity

# 1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title <b>Research act</b>			tivity						
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor(	(s)			Prof. dr. Lucia	n Ion			
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	2	evalı	uation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	0	Tutorials/Practicals	0/4
3.2. Total hours per semester	56	distribution: lecture	0	Tutorials/Practicals	0/56
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					0
3.2.2. Research in library, study of electronic resources, field research					5
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study	. –				

	15
3.4. Total hours per semester	75
3.5. ECTS	3

# **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

of riequit eu opeen	
Professional	53. Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
	<b>54.</b> Solving physics problems in given conditions
	<b>55.</b> Analysis and communication of scientific data, communication for physics popularisation.
	<b>56.</b> Use of professional software
Transversal	
competencies	<b>57.</b> Efficient use of scientific information and communication resources for professional formation in English.
	<b>58.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

# 7. Course objectives

i eouise objecuites	
7.1. General objective	Knowledge and use of experimental or theoretical methods used in
-	fabrication and/or characterization of materials and nanostructures
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

8.1. Lecture [chapters]	Teaching techniques	Observations
	Systematic exposition -	
	lecture. Examples.	
References: <b>39.</b>		
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
	Exposition. Guided work	
Bibliography: 19.		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	
Bibliografie:		
1.		
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Experimental methods used in fabrication and/or characterization of materials and nanostructures	Guided practical work	- specific types of activities, defined by the research theme chosen by student
Theoretical models for description of physical properties/physical phenomena related to materials and nanostructures	Guided practical work	- specific types of activities, defined by the research theme chosen by student

Bibliography:

- to be indicated by the coordinator of the research activity

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2. Practicals			
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Knowledge of experimental techniques</li> <li>Ability to analyse scientific data</li> </ul>	Research report	100%
10.6. Minimal requirement	nts for passing the exam		

## **Requirements for mark 5 (10 points scale)**

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2019		etrică Cristea

# DI.203 Nanostructures for electronics and optoelectronics

# 1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

## 2. Course unit

2.1. Course title		N	Nanostructures for electronics and optoelectronics						
2.2. Teacher			Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE						
			Assist. Prof. Ph	n.D. So	orina IFTIMI	E			
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1 evaluation		Е	of course unit	Type ²⁾	DI	

¹⁾ deepening (DA), specialty/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum       4       distribution: lecture       2       Tutorials/Practicals       0/2         3.2. Total hours per semester       56       distribution: lecture       28       Tutorials/Practicals       0/28         Distribution of estimated time for study       56       distribution: lecture       28       Tutorials/Practicals       0/28         3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography       15       15         3.2.2. Research in library, study of electronic resources, field research       30       30         3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks       20       20         3.2.4. Examination       4       4         3.2.5. Other activities       0         3.3. Total hours of individual study       65	of i other commuted mine (nouis, semester	.,				
56distribution: lecture28Tutorials/Practicals0/28Distribution of estimated time for studyHours3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography153.2.2. Research in library, study of electronic resources, field research303.2.3. Preparation for practicals/tutorials/projects/reports/homeworks203.2.4. Examination43.2.5. Other activities0	3.1. Hours per week in curriculum	4		2	Tutorials/Practicals	0/2
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography153.2.2. Research in library, study of electronic resources, field research303.2.3. Preparation for practicals/tutorials/projects/reports/homeworks203.2.4. Examination43.2.5. Other activities03.3. Total hours of individual study	3.2. Total hours per semester	56	-	28	Tutorials/Practicals	0/28
3.2.2. Research in library, study of electronic resources, field research303.2.3. Preparation for practicals/tutorials/projects/reports/homeworks203.2.4. Examination43.2.5. Other activities03.3.7 Total hours of individual study0	Distribution of estimated time for study					Hours
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks203.2.4. Examination43.2.5. Other activities03.3. Total hours of individual study1	3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					15
3.2.4. Examination       4         3.2.5. Other activities       0         3.3. Total hours of individual study       0	3.2.2. Research in library, study of electronic resources, field research					30
3.2.5. Other activities   0	3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					20
2.2. Total hours of individual study	3.2.4. Examination					4
3.3. Total hours of individual study 65	3.2.5. Other activities					0
	3.3. Total hours of individual study	65	_			

	05
3.4. Total hours per semester	125
3.5. ECTS	5

## **4. Prerequisites** (if necessary)

4.1. curriculum	Introduction in Nanotechnology, Preparation and characterization methods at	
	nanoscale, Solid State Physics, Materials Science, Optics, Electricity, Electronics	
4.2. competences	20. Skills in handling small-scale lab equipment and basic research tools to perform	
	complex scientific experiments	
	21. Using of software tools for data analysis and processing	

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practicals	MDEO research infrastructure and Nanotechnology lab.

0. Acquireu speen	ic competencies			
Professional	<b>59.</b> Understanding of physico-chemical processes involved in the fabrication of			
competencies	nanostructures and nanomaterials			
	<b>60.</b> Knowledge of using modern micro- and nanotechnology to design various types of nanostructured devices			
	<b>61.</b> Skills in handling electrochemical equipment for the preparation of quasi-1D			
	nanostructures (i.e. nanowires, nanotubes, nanorods, etc.)			
	<b>62.</b> Abilities in experimental data analysis and interpretation in order to formulate			
	relevant and rigorous conclusions			
	<b>63.</b> Competences of employing advanced characterization tools of nanomaterials and			
	of specific nanostructured opto-/electronic devices			
Transversal	<b>64.</b> Efficient use of the available scientific information resources (specialized books,			
competencies	research papers, internet search)			
	<b>65.</b> Responsible implementation of professional tasks while carefully taking into			
	account the ethics and deontology			
	<b>66.</b> Ability to communicate in English the scientific results to a broad audience in a			
	rigorous and clearly structured manner			

# 7. Course objectives

7. Course objectives			
7.1. General objective	Development and characterization of novel nanostructured materials, to		
	be used as active functional building blocks within modern electronic and		
	optoelectronic devices		
7.2. Specific objectives	Preparation methods of nanostructures and nanomaterials		
	Advanced characterization of functional nanostructures		
	Construction of sensors and biosensors based on nanostructured materials		
	Fabrication of photovoltaic structures based on nanostructured materials		

8. Conte	ints		
8.1. Le	cture [chapters]	Teaching techniques	Observations
Introdu 1. 2. 3.	ction in nanoscale science and technology Nanostructures. Types and classification Nanometer-scale effects	Systematic exposition - Lecture. Examples.	4 hours
Nanopo 4.	Cleanrooms. Construction and classes prous templates in nanotechnology General considerations	Systematic exposition -	4 hours
6.	Supported alumina templates Template-assisted electrochemical synthesis raphy patterning approaches	Lecture. Examples.	
2. 3.	General considerations	Systematic exposition - Lecture. Examples.	4 hours
1. 2.	ructures growth and spatial nanolocalization Top down and bottom-up approaches Localization with single-nanowire resolution Types of nanostructured devices	Systematic exposition - Lecture. Examples.	4 hours
	ction in nanostructured sensing and biosensing Sensors and biosensors. Generalities Nanostructured capacitive sensors Nanostructured chemiresistive sensors	Systematic exposition - Lecture. Examples.	6 hours
Introdu 1. 2. 3.	ction in Photovoltaics Solar cells. General considerations Main performance quantifiers Solar cells based on A ² -B ⁶ heterojunctions	Systematic exposition - Lecture. Examples.	6 hours

### References:

- **40.** V. A. Antohe, "Capacitive Sensors Based on Localized Nanowire Arrays. Nanotechnology & Device Integration Routes", Lambert Academic Publishing (LAP), 2013, ISBN: 978-3-659-38899-6
- 1. M. Di Ventra, S. Evoy, J. R. Heflin Jr., Kluwer, "Introduction to Nanoscale Science and Technology", Academic Publishers 2004, ISBN: 1-402-07757-2
- 1. B. Bhushan, "Springer Handbook of Nanotechnology", Springer 2007, ISBN: 3-540-29855-X
- 2. V. A. Antohe, Lecture notes

2. V. A. Antone, Lecture notes		
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning techniques	Observations
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Anodic oxidation of thin aluminum films.	Exposition. Guided practical work	4 hours
Electrochemical deposition within supported nanoporous alumina templates	Exposition. Guided practical work	4 hours
Synthesis of electro-conductive polymers for sensing and biosensing	Exposition. Guided practical work	4 hours
Nanowires and nanotubes. Scanning electron microscopy (SEM)	Exposition. Guided practical work	4 hours
Electron-beam lithography (EBL)	Exposition. Guided practical work	4 hours
Topography of thin films. Atomic force microscopy (AFM)	Exposition. Guided practical work	4 hours
Nanolithography with an atomic force microscope (AFM)	Exposition. Guided practical work	4 hours
Bibliography: S. Antohe, L. Ion, F. Stanculescu, S. Iftimie materialelor semiconductoare – Lucrari pract pages, 2016, ISBN: 978-973-558-940-0		din Bucuresti, 16

S. Matéfi-Tempfli, M. Matéfi-Tempfli, A. Vlad, V. A. Antohe and L. Piraux, "Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques", J. Mater. Sci – Mat. Electron. 20(1), 249-254 (2009), doi: 10.1007/s10854-008-9568-6

8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Presentation of a scientific paper	Exposition. Individual work	4 hours
Bibliography:		

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics, as well as of nanoscale science and technology. The contents and teaching methods were selected after a thorough analysis of similar course units within universities from Romania and European Union (Hannover University – Germany and Catholique University of Louvain – Belgium). The entire content of this lecture is thoroughly in line with the requirements of the main employers from industry, research institutes, universities or high-schools.

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark			
10.4. Lecture	- Explicitness, coherence and concision of scientific statements	Written and oral exam	25%			
10.5.1. Tutorials						
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Ability to use various top-down and bottom-up methods to design nanostructured devices</li> </ul>	Colloquium	50%			
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Presentation of a scientific paper</li> <li>Quality of the presentation</li> <li>Ability to communicate the scientific results in a clear and structured manner</li> <li>Ability to address the questions and comments arising during and after the presentation</li> </ul>	Oral presentation with Q&A session	25%			
10.6. Minimal requirements for passing the exam						
Requirements for mark 5 (10 points scale)Attending the presentations session and presenting a scientific paper, as a partial assessment.Finalizing the work associated with the practical sessions and obtaining a mark of 5 at the colloquium.Correctly addressing the final exam topics for a minimal mark of 5.						

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
20.05.2019	Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE	Assoc. Prof. Ph.D. Eng. Vlad-Andrei ANTOHE

Assist. Prof. Ph.D. Sorina IFTIMIE

Date of approval 10.06.2019

Head of department, Conf. univ. dr. Petrică CRISTEA

# DI.205 Research activity

# 1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title	2.1. Course title <b>Research act</b>			tivity					
2.2. Teacher									
2.3. Tutorials ins	structor(	5)							
2.4. Practicals in	structor(	(s)			Prof. dr. Lucia	n Ion			
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	3	evalı	lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	6	distribution: lecture	0	Tutorials/Practicals	0/6
3.2. Total hours per semester	84	distribution: lecture	0	Tutorials/Practicals	0/84
Distribution of estimated time for study					
3.2.1. Learning by using one's own cou	irse no	otes, manuals, lecture	notes,	bibliography	0
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					32
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study					•

3.3. Total hours of individual study	62	
3.4. Total hours per semester	150	
3.5. ECTS	6	

# **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State	
	Physics, Electrodynamics, Thermodynamics and statistical physics	
4.2. competences	Using of specialized software for scientific data analysis	

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

of riequited speen	ic competencies			
Professional	<b>67.</b> Creative use of acquired knowledge for preparation and characterization of			
competencies	materials and nanostructures			
	<b>68.</b> Solving physics problems in given conditions			
	<b>69.</b> Analysis and communication of scientific data, communication for physics popularisation.			
	<b>70.</b> Use of professional software			
Transversal				
competencies	<b>71.</b> Efficient use of scientific information and communication resources for			
F. F	professional formation in English.			
	<b>72.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.			

# 7. Course objectives

i course objectives		
7.1. General objective	Knowledge and use of experimental or theoretical methods used în	
-	fabrication and/or characterization of materials and nanostructures	
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific	
	phenomena and to stimulate the creative and critical thinking for solving	
	practical issues.	

8.1. Lecture [chapters]	Teaching techniques	Observations
	Systematic exposition -	
	lecture. Examples.	
References:		
41.		
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observations
-	techniques	Observations
	Exposition. Guided work	
Bibliography:		
22.		
	Teaching and learning	
<b>8.3. Practicals</b> [research subjects, projects]	techniques	Observations
	Guided practical work	
Bibliografie:		
1.		
<b>8.4. Research project</b> [if applicable]	Teaching and learning	Observations
	techniques	Observations
Experimental methods used in fabrication and/or	Guided practical work	- specific types of
characterization of materials and nanostructures	-	activities, defined
		by the research
		theme chosen by
		student
Theoretical models for description of physical	Guided practical work	- specific types of
properties/physical phenomena related to materials and		activities, defined
nanostructures		by the research
		theme chosen by
		student

Bibliography:

- to be indicated by the coordinator of the research activity

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2. Practicals			
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Knowledge of experimental techniques</li> <li>Ability to analyse scientific data</li> </ul>	Research report	100%
<b>10.6. Minimal requirement</b>	nts for passing the exam		

### **Requirements for mark 5 (10 points scale)**

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2019		f department, Petrică Cristea

# DI.206 Physics of liquid crystals and polymeric materials. Applications.

# 1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title <b>Physics of li</b>				quid crystals an	d poly	ymeric mate	rials. Applicatio	ons.	
2.2. Teacher			Prof. dr. Valen	tin Ba	rna				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals instructor(s)		Prof. dr. Valentin Barna							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	1	evalı	lation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

# 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	0/28
Distribution of estimated time for study	7	•			hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		21
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewo	rks		30
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study	01				

3.3. 1 otal nours of individual	study 81	
3.4. Total hours per semester	125	
3.5. ECTS	5	

# **4. Prerequisites** (if necessary)

4.1. curriculum	Numerical methods, Molecular physics and heat, Thermodynamics and Statistical
	Physics
4.2. competences	23. Knowledge and understanding of physical properties of liquid crystals
	24. Knowledge and understanding of physical properties of polymeric materials
	25. Knowledge and understanding of the physical processes and phenomena typical
	for liquid crystals and polymeric materials based devices
	26. Understanding underlying physical phenomena
	27. Ability to analyze and understand relevant experimental data and to formulate
	rigorous conclusions

# 5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practical	Experimental set-ups in Thin Films Laboratory and Nanotechnology
classes	Laboratory of Materials and Devices for Electronics and
	Optoelectronics R&D Center

### 6. Acquired specific competencies

o. Acquired specifi	it competencies
Professional	73. Knowledge and explanation of the physical properties of liquid crystals and
competencies	polymeric materials
	<b>74.</b> Knowledge and explanation of the physical properties of liquid crystals and polymeric materials based devices
	<b>75.</b> Development of specific capacities of analysis using fundamental processes and phenomena in physics
	<b>76.</b> Development of the ability to create and properly use of mathematical and numerical models applied to liquid crystals and polymeric materials and their applications
	77. Analysis and communication of scientific data.
	<b>78.</b> Use and development of specific laboratory equipments.
Transversal competencies	<ul> <li>79. Efficient use of scientific information resources for professional formation in English.</li> <li>80. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.</li> </ul>

## 7. Course objectives

7. Course objectives	
7.1. General objective	Knowledge and understanding of the physical properties of liquid crystals and polymeric materials and their applications
7.2. Specific objectives	Liquid crystals: physical properties, chemical properties, chemical structure, growth methods         Nematic liquid crystals: phase transitions         Continuum theory applied to liquid crystals         Liquid crystals displays: physical properties, chemical properties, growth methods         Liquid crustal-impurities compounds         Polymer liquid crystals: physical properties, chemical properties, growth
	methods Structure-properties relation for polymer liquid crystals Supramolecular polymers Liquid crystals and polymer liquid crystals based devices

o. contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Physics of liquid crystals – classification, physical and	Systematic exposition -	
chemical properties, aggregation states	lecture.	2 hours
Nematic liquid crystals: phase transitions, density	Systematic exposition -	
functional theory, nematic liquid crystals – isotropic	lecture.	
materials interface		4 hours
Continuum theory applied to liquid crystals: Freank-	Systematic exposition -	
Oseen free energy, physical phenomena at surface,	lecture. Examples.	
Fredericks effect for various configurations.	-	4 hours
Liquid crystals displays: definition, classification,	Systematic exposition -	
physical properties	lecture. Examples.	2 hours
Liquid crustal-impurities compounds	Systematic exposition -	2 hours

	lecture. Examples.	
Polymer liquid crystals: classification, physical and	Systematic exposition -	
chemical properties, growth methods	lecture. Examples.	
	•	2 hours
Structure-properties relation for polymer liquid	Systematic exposition -	
crystals: geometric stereoisomers, optical	lecture. Examples.	
stereoisomers, stereoisomerism to polymers		
		2 hours
Supramolecular polymers: physical properties,	Systematic exposition -	
chemical properties	lecture. Examples.	
T		4 hours
Liquid crystals and polymer liquid crystals based	Systematic exposition -	
devices	lecture. Examples.	4 hours
Resume of lectures.	Systematic exposition -	
	lecture. Examples.	2 hours
References:		
<ul> <li>42. L. Georgescu, V. Popa-Niță, E. Barna, C. Ber București, 2002</li> <li>42. D.C. do Connece, L. Prost. The physics of liquid end</li> </ul>		-
<b>43.</b> P.G. de Gennes, J. Prost, <i>The physics of liquid cr</i>		555
<b>44.</b> S. Chandrasekhar, <i>Liquid crystals</i> , Cambridge Un	5	na Universitätii di
<b>45.</b> C. Moţoc, G. Iacobescu, <i>Cristale lichide – pro</i>	oprietați fizice și aplicații, Editi	ira Universitații di
Craiova, 2004	arilar Matada da atudiu. Editu	na Universitătii di
<b>46.</b> L. Constantinescu, C. Berlic, <i>Structura polime</i>	ernor. Melode de studid, Editu	ia Oliveisitații ul
București, 2003 8.2. Tutorials [main tutorial subjects]	Teaching and learning	
<b>6.2. I utoriais</b> [main tutorial subjects]	I eaching and learning	-
		Observations
	techniques	Observations
		Observations
	techniques	
8.3. Practicals [research subjects, projects]	techniques Teaching and learning	Observations Observations
	techniques Teaching and learning techniques	Observations
Building of liquid crystal cell with various	techniques Teaching and learning	
Building of liquid crystal cell with various configurations and by different methods	techniques Teaching and learning techniques Guided practical work	Observations 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell	techniques Teaching and learning techniques Guided practical work Guided practical work	Observations 4 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell	techniques Teaching and learning techniques Guided practical work Guided practical work Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell	techniques Teaching and learning techniques Guided practical work Guided practical work	Observations 4 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface.	techniques Teaching and learning techniques Guided practical work Guided practical work Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 2 hours 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes parameters	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 4 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes parameters Liquid-solid nucleation methods and phase transitions	techniques         Teaching and learning techniques         Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 4 hours 2 hours 4 hours 4 hours 4 hours 4 hours 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment	techniques Teaching and learning techniques Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 4 hours 2 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes parameters Liquid-solid nucleation methods and phase transitions Hand-on lab test & quiz	techniques         Teaching and learning techniques         Guided practical work         Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 2 hours 4 hours 2 hours 4 hours 2 hours 4 hours 2 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes parameters Liquid-solid nucleation methods and phase transitions	techniques Teaching and learning techniques Guided practical work Teaching and learning	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 4 hours 2 hours 4 hours 4 hours 4 hours 4 hours 4 hours
Building of liquid crystal cell with various configurations and by different methods Aligned nematic liquid crystal cell Twisted nematic liquid crystal cell Electro-optical characterization of a liquid crystal cell and polymeric thin film Liquid crystal cell: molecular alignment at surface. Homeotropic alignment. Planar alignment Polymerization process by cold plasmas. Atomic force microscopy analysis and optical microscopy investigations of obtained polymeric film. Evaluation of specific parameters Liquid crystals displays: electro-optical characterization – pixels and optical filters The anisotropy of output functions. Evaluation of Stokes parameters Liquid-solid nucleation methods and phase transitions Hand-on lab test & quiz	techniques         Teaching and learning techniques         Guided practical work         Guided practical work	Observations 4 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours 4 hours 2 hours 4 hours 2 hours 4 hours 2 hours 4 hours 2 hours

- 7. L. Georgescu, L. Constantinescu, E. Barna, C. Miron, C. Berlic, *Introducere în fizica polimerilor*, Editura Credis, București, România, 2004
- 8. Shri Singh, *Liquid crystals. Fundamentals*, Editura World Scientific, 2002
- **9.** L.M. Constantinescu, C. Berlic, V. Barna, *Fizico-chimia polimerilor*. *Aplicații*, Editura Universității din București, 2006

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

## 10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark			
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyze specific examples;</li> </ul>	Written exam	70%			
10.5.1. Tutorials						
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	30%			
<b>10.5.3. Project</b> [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark 5 (10 points scale)						
Correct solving of subjects	indicated as required for obtaining m	ark 5.				

Date	Teacher(s) name and signature	Practicals/Tutorials instructor(s)
25.05.2019	Prof. dr. Valentin Barna	name(s) and signature(s)
		Prof. dr. Valentin Barna

Date of approval 10.06.2019

Head of department, Conf. dr. Petrică Cristea

# DI.208 Research activity

# 1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title	e Research ac			tivity					
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor(	(s)			Prof. dr. Lucia	n Ion			
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	3	evalı	lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	18	distribution: lecture	0	Tutorials/Practicals	0/18
3.2. Total hours per semester	18 0	distribution: lecture	0	Tutorials/Practicals	0/180
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					0
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					50
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study					

3.3. Total hours of individual study	191
3.4. Total hours per semester	345
3.5. ECTS	15

# **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

of frequired speen	
Professional	<b>81.</b> Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
	<b>82.</b> Solving physics problems in given conditions
	<b>83.</b> Analysis and communication of scientific data, communication for physics popularisation.
	<b>84.</b> Use of professional software
Transversal	
competencies	<b>85.</b> Efficient use of scientific information and communication resources for
1	professional formation in English.
	<b>86.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

# 7. Course objectives

Knowledge and use of experimental or theoretical methods used în
fabrication and/or characterization of materials and nanostructures
Highlighting of specific problems designed to understand the specific
phenomena and to stimulate the creative and critical thinking for solving
practical issues.

8.1. Lecture [chapters]	Teaching techniques	Observations	
	Systematic exposition -		
	lecture. Examples.		
References:			
47.			
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning	Observations	
	techniques	Observations	
	Exposition. Guided work		
Bibliography:			
28.			
	Teaching and learning		
<b>8.3. Practicals</b> [research subjects, projects]	techniques	Observations	
	Guided practical work		
Bibliografie:			
1.			
<b>8.4. Research project</b> [if applicable]	Teaching and learning	Observations	
	techniques	Observations	
Experimental methods used in fabrication and/or	Guided practical work	- specific types of	
characterization of materials and nanostructures	-	activities, defined	
		by the research	
		theme chosen by	
		student	
Theoretical models for description of physical	Guided practical work	- specific types of	
properties/physical phenomena related to materials and	±	activities, defined	
nanostructures		by the research	
		theme chosen by	
		student	

Bibliography:

- to be indicated by the coordinator of the research activity

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark		
10.4. Lecture					
10.5.1. Tutorials					
10.5.2. Practicals					
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Knowledge of experimental techniques</li> <li>Ability to analyse scientific data</li> </ul>	Research report	100%		
10.6. Minimal requirements for passing the exam					

## **Requirements for mark 5 (10 points scale)**

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2019		etrică Cristea

# **DI.209** Finalization of master thesis

# 1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title		I	Resea	rch ac	tivity				
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor(	(s)			Prof. dr. Lucia	n Ion			
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	4	evalı	lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	0	distribution: lecture	0	Tutorials/Practicals	0/0
3.2. Total hours per semester	0	distribution: lecture	0	Tutorials/Practicals	0/0
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					0
3.2.2. Research in library, study of electronic resources, field research					61
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				50	
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study					-

3.3. Total hours of individual study	121
3.4. Total hours per semester	125
3.5. ECTS	5

# **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

of frequined opeen	
Professional	<b>87.</b> Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
	<b>88.</b> Solving physics problems in given conditions
	<b>89.</b> Analysis and communication of scientific data, communication for physics popularisation.
	<b>90.</b> Use of professional software
Transversal	
competencies	<b>91.</b> Efficient use of scientific information and communication resources for professional formation in English.
	<b>92.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

# 7. Course objectives

i course objectives	
7.1. General objective	Knowledge and use of experimental or theoretical methods used in
	fabrication and/or characterization of materials and nanostructures
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

8.1. Lecture [chapters]	Teaching techniques	Observations	
	Systematic exposition -		
	lecture. Examples.		
References:			
48.			
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observations	
-	techniques	Observations	
	Exposition. Guided work		
Bibliography:			
29.			
	Teaching and learning		
<b>8.3. Practicals</b> [research subjects, projects]	techniques	Observations	
	Guided practical work		
Bibliografie:			
1.			
<b>8.4. Research project</b> [if applicable]	Teaching and learning	Oharmatiana	
	techniques	Observations	
Experimental methods used in fabrication and/or	Guided practical work	- specific types of	
characterization of materials and nanostructures	-	activities, defined	
		by the research	
		theme chosen by	
		student	
Theoretical models for description of physical	Guided practical work	- specific types of	
properties/physical phenomena related to materials and	L.	activities, defined	
nanostructures		by the research	
		theme chosen by	
		student	

Bibliography:

- to be indicated by the coordinator of the research activity

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2. Practicals			
<b>10.5.3. Project</b> [if applicable]	<ul> <li>Clarity, coherence and concision of exposition;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Knowledge of experimental techniques</li> <li>Ability to analyse scientific data</li> </ul>	Report on master thesis	100%
10.6. Minimal requirement	nts for passing the exam		

## **Requirements for mark 5 (10 points scale)**

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2019	Head of department, Conf. dr. Petrică Cristea	

# **II. Elective course units**

# DO.111.1 Physics of mesoscopic systems

# 1. Study program

<u></u>	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

# 2. Course unit

2.1. Course title Physics of m			esoscopic syste	ms					
2.2. Teacher			Prof. dr. Lucian Ion						
2.3. Tutorials instructor(s)				Prof. dr. Lucian Ion					
2.4. Practicals instructor(s)									
2.5. Year of		2.6.			Type of		2.8. Туре	Content ¹⁾	DS
study	1	Semester	2	evalı	lation	Ε	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination				4	
3.2.5. Other activities					
3.3. Total hours of individual study	65				

	05	
3.4. Total hours per semester	125	
3.5. ECTS	5	

## 4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	30. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

Professional	<b>93.</b> Identificartion and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for mesoscopic systems.
_	<b>94.</b> Solving physics problems in given conditions.
	<b>95.</b> Creative use of acquired physical knowledge to understand and to construct
	models for physical processes and properties of mesoscopic
	systems/nanostructures.
	<b>96.</b> Analysis and communication of scientific data, communication for physics
	popularisation.
	<b>97.</b> Use and development of specific software tools.
Transversal	
competencies	<b>98.</b> Efficient use of scientific information resources and of communication and of
-	resources for professional formation in English.
	<b>99.</b> Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

## 7. Course objectives

i eourse objectives		
7.1. General objective	Introduction and analysis of the physical properties of mesoscopic	
	systems	
7.2. Specific objectives	Study of electronic structure, transport and optical properties of	
	mesoscopic systems.	
	Analysis of specific charge transport models.	
	Highlighting of essential problems in understanding of specific	
	phenomena, in order to stimulate creative and critical thinking în solving	
	problems.	

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: description of mesoscopic systems. Growth and processing methods. Length scales.	Systematic exposition - lecture. Examples.	4 hours
Electronic structure of mesoscopic systems. Envelope wavefunction method.	Systematic exposition - lecture. Examples.	4 hours
Anderson localization. Scaling theory of localization. Reduced dimensionality. Case $d \le 2$ . Case $d > 2$ . Metal-insulator transition	Systematic exposition - lecture. Examples.	6 hours
Quantum interference effects în charge transport. Landauer-Büttiker formalism. Applications.	Systematic exposition - lecture. Examples.	4 hours
Chrage transport în magnetic fields. Shubnikov – de Haas oscillations. Integer quantum Hall effect.	Systematic exposition - lecture. Examples.	4 hours
Aharonov-Bohm effect. Berry phase.	Systematic exposition - lecture. Examples.	4 hours
Coulomb blockade în semiconductor nanostructures	Systematic exposition - lecture. Examples.	2 hours
References: <b>49.</b> D.K. Ferry, S.M. Goodnick, <i>Transport in nanost</i>	tructures (Cambridge University Pres	s, Cambridge,

UK, 1997).

**FD** 

- 50. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- 51. H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard (Eds.), Nanophysics: Coherence and Transport (Elsevier, Amsterdam, Netherland, 2005).
- 52. V.F. Gantmakher, *Electrons and disorder în solids* (Clarendon Press, Oxford, UK, 2005) I Ion Course notes

53. L. Ion, Course notes		
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning techniques	Observations
Electronic states în mesoscopic systems. Envelope	Exposition. Guided work	4 ore
wavefunction method. Aplications.		
Effect of disorder in 1D and 2D electronic systems.	Exposition. Guided work	4 ore
Electronic states in 2D electron systems in magnetic	Exposition. Guided work	4 ore
fields. Disorder effects.		
Charge transport în mesoscopic structures. R-matrix	Exposition. Guided work	4 ore
formalism.		
Charge transport in quantum wires. <i>Ab initio</i> models.	Exposition. Guided work	4 ore
Weak localization regime.	Exposition. Guided work	4 ore
Electron-phonon interaction în low-dimensional	Exposition. Guided work	4 ore
systems. Peierls transition.		

#### **Bibliography:**

L. Mihaly, M.C. Martin, Solid State Physics – Problems and solutions (Wiley, New York, USA, 1996)

S. Datta, *Electronic Transport în Mesoscopic Systems* (Cambridge University Press, Cambridge, UK, 1997).

Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, UK, 1997)

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	4 ore
<b>8.4. Research project</b> [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

### 9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

### 10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models</li> </ul>	Written and oral exam	50%

	and of specific mathematical				
	methods;				
	- Ability to analyse specific				
	examples;				
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%		
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	xx%		
<b>10.5.3. Project</b> [if					
applicable]					
10.6. Minimal requirem	ents for passing the exam				
Requirements for mark 5 (10 points scale)					
Correct solving of subjec	ts indicated as required for obtaining n	nark 5.			

Date

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

25.05.2019

Prof. dr. Lucian Ion

Date of approval 10.06.2019

Prof. dr. Lucian Ion Head of department, Conf. dr. Petrică Cristea

# DO.111.2 Transport phenomena in disordered materials

# 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

## 2. Course unit

2.1. Course title		]	Transport phenomena in disordered materials						
2.2. Teacher			Prof. dr. Luciar	n Ion					
2.3. Tutorials instructor(s)			Prof. dr. Luciar	n Ion					
2.4. Practicals instructor(s)			Prof. dr. Luciar	n Ion					
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2	evalı	uation	Е	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

## 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	1/1
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	14/14
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination					4
3.2.5. Other activities					
2.2. Total have after dividual atudar					

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

## **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	31. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Research infrastructure în MDEO research center

or riequit eu opeen.			
Professional	100.	Knowledge of transport phenomena în disordered electron systems	
competencies	101.	Solving physics problems in given conditions.	
	102.	Creative use of acquired physical knowledge to understand and to	
	cons	truct models for physical processes in disordered electron systems.	
	103.	Analysis and communication of scientific data, communication for physics	
	рорι	ilarisation.	
	104.	Use and development of specific software tools.	
Transversal competencies	106.	Efficient use of scientific information resources and of communication and esources for professional formation in English. Efficient and responsible implementation of professional tasks, with ervance of the laws, ethics and deontology.	

## 7. Course objectives

7.1. General objective	Analysis of charge transport în disordered electron systems
7.2. Specific objectives	Study of electronic structure în disordered materials.
	Analysis charge transport models în disordered materials.
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

## 8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
<b>Localization of electronic states in solids</b> : structure of isolated impurity states; Lifschitz model of localization; structure of impurity bands in lightly doped semiconductors; structure of impurity bands in heavily doped semiconductors.	Systematic exposition - lecture. Examples.	6 hours
<b>Hopping transport mechanism</b> : experimental facts; Miller-Abrahams model; percolation models; nearest- neighbours hopping transport mechanism; dependence on impurity density; activation energy; variable-range hopping mechanism (Mott).	Systematic exposition - lecture. Examples.	12 hours
<b>Hopping in magnetic field</b> : magnetorezistance, dependence on magnetic field; Hall effect	Systematic exposition - lecture. Examples.	8 hours
Super-ohmic effects	Systematic exposition - lecture. Examples.	2 hours

References:

- **54.** B.I. Shklovskii, A.L.Efros, *Electronic properties of doped semiconductors* (Springer, Heidelberg, 1984).
- **55.** N.F. Mott, E.A. Davis, *Electron processes in non-crystalline materials* (Clarendon Press, Oxford, 1979).
- 56. S. Antohe, *Fizica semiconductorilor organici* (Editura Universității din București, București, 1997).
- **57.** V.F. Gantmakher, *Electrons and disorder în solids* (Clarendon Press, Oxford, UK, 2005).B.I. Shklovskii, A.L.Efros, *Electronic properties of doped semiconductors* (Springer, Heidelberg, 1984).
- **58.** N.F. Mott, E.A. Davis, *Electron processes in non-crystalline materials* (Clarendon Press, Oxford, 1979).

**59.** S. Antohe, *Fizica semiconductorilor organici* (Editura Universității din București, București, 1997). **60.** V.F. Gantmakher, *Electrons and disorder în solids* (Clarendon Press, Oxford, UK, 2005).

	( end enden 1 ress), ennerd, err,	<b>_</b> 000).
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning techniques	Observations
Electronic states în disordered systems. Applications.	Exposition. Guided work	6 hours
Metal/semiconductor contact phenomena	Exposition. Guided work	4 hours
Coulomb gap. Shklovskii-Efros model.	Exposition. Guided work	4 hours

#### Bibliography:

L. Mihaly, M.C. Martin, *Solid State Physics – Problems and solutions* (Wiley, New York, USA, 1996) N.F. Mott, E.A. Davis, *Electron processes in non-crystalline materials* (Clarendon Press, Oxford, 1979).

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Percolation. Structure of critical cluster. Numerical methods – lattice models.	Guided practical work	4 hours
Charge transport în policrystaline/amorphous semiconductor films	Guided practical work	4 hours
Hopping magnetoresistance.	Guided practical work	2 hours
Thermally stimulated currents	Guided practical work	4 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

### 10. Assessment

			10.3.
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight în
			final mark
10.4. Lecture	- Explicitness, coherence and	Written and oral exam	50%
	concision of scientific statements;		
	- Correct use of physical models and		
	of specific mathematical methods;		
	- Ability to analyse specific examples;		
10.5.1. Tutorials	- Use of specific physical and	Homework	25%
	mathematical methods and techniques;		
10.5.2. Practicals	- Knowledge and correct use of	Scientific reports on practical	25%
	specific experimental techniques	activities	
	- Data processing and analysis;		
10.5.3. Project [if			
applicable]			
10.6. Minimal requi	rements for passing the exam		
-			

# **Requirements for mark 5 (10 points scale)** All practicals have to be performed. Correct solving of subjects indicated as required for obtaining mark 5 (final exam and homeworks).

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2019		f department, Petrică Cristea

# DO.111.3 Linear transport theory

# 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

## 2. Course unit

2.1. Course title		L	Linear transport theory							
2.2. Teacher			Prof. dr. Lucian Ion							
2.3. Tutorials instructor(s)				Prof. dr. Lucia	n Ion					
2.4. Practicals instructor(s)										
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS	3
study	1	Semester	2	evalı	uation	Ε	of course unit	Type ²⁾	DO	)

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

# 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination					4
3.2.5. Other activities					
2.2. Total have after dividual study					

3.3. Total hours of individual study	65	
3.4. Total hours per semester	125	
3.5. ECTS	5	

## **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	32. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Computing infrastructure în MDEO research center

of riequired speen.					
Professional	107.	Knowledge of linear transport theory (linear response functions,			
competencies	generalized susceptibility, fluctuation-dissipation theorem)				
	108.	Solving physics problems in given conditions.			
	109.	Creative use of acquired physical knowledge to understand and to			
	cons	struct models for physical processes in disordered electron systems.			
	110.	Analysis and communication of scientific data, communication for physics			
	рорі	llarisation.			
	111.	Use and development of specific software tools.			
Transversal competencies	113.	Efficient use of scientific information resources and of communication and esources for professional formation in English. Efficient and responsible implementation of professional tasks, with ervance of the laws, ethics and deontology.			

### 7. Course objectives

7. Gourse objectives	
7.1. General objective	Formulation of linear response theory
7.2. Specific objectives	Study of linear response function and generalized susceptibility.
	Application to physical phenomena
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

### 8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations	
Introduction to non-equilibrium thermodynamics.	Systematic exposition -	4 hours	
Thermodynamic forces and fluxes.	lecture. Examples.	4 nours	
Linear response. Onsager's relations. Applications.	Systematic exposition -	4 hours	
	lecture. Examples.		
Quantum theory of linear response. Response function.	Systematic exposition -	6 hours	
Correlation functions. Generalized susceptibility.	lecture. Examples.		
Kramers-Krönig relations. Dissipation phenomena.	Systematic exposition -	4 hours	
Relaxation phenomena.	lecture. Examples.		
Fluctuation-dissipation theorem	Systematic exposition -	4 hours	
•	lecture. Examples.		
Quantum transport. Kubo formula. Kubo-Greenwood	Systematic exposition -	6 hours	
formula.	lecture. Examples.		
	•	•	

**References:** 

61. R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, New York, USA, 1975).

62. C. Jacoboni, Theory of electron transport in semiconductors (Springer, Berlin, 2010).

63. J. Rammer, Quantum transport theory (Perseus, Reading, USA, 1998).

**64.** L. Ion, Note de curs

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Electric conductivity in disordered electron systems.	Exposition. Guided work	4 ore
Susceptibility of electron gas. Aproximations.	Exposition. Guided work	4 ore
Dynamic structure factor	Exposition. Guided work	4 ore
Aplications: dielectric relaxation; magnetic resonance	Exposition. Guided work	8 ore

Aplications: light scattering on density fluctuations	Exposition. Guided work	4 ore
Aplications: fluctuation-dissipation theorem	Exposition. Guided work	4 ore
Bibliography:		
	Teaching and learning	
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	
<b>8.4. Research project</b> [if applicable]	Teaching and learning techniques	Observations
Bibliography:	·	

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark				
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific examples;</li> </ul>	Written and oral exam	50%				
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework	50%				
10.5.2. Practicals							
<b>10.5.3. Project</b> [if applicable]							
10.6. Minimal requirements for passing the exam							
Requirements for mark 5 (10 points scale)							
Correct solving of subjects indicated as required for obtaining mark 5 (final exam and homeworks).							

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Lucian Ion	
		Prof. dr. Lucian Ion
Date of approval	Head of	f department,
10.06.2019	Conf. dr. 1	Petrică Cristea

# **DO.201.1** Nonlinear Optics

## 1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

## 2. Course unit

2.1. Course title		I	Nonlinear Optics						
2.2. Teacher		Prof. dr. Daniela Dragoman							
2.3. Tutorials instructor(s)			Prof. dr. Daniela Dragoman						
2.4. Practicals instructor(s)		Conf. Dr. Ciceron Berbecaru							
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester			uation	Ε	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

# 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	1.43/0. 57
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	20/8
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination					4
3.2.5. Other activities					
2.2. Total hours of individual study					•

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

# **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics
4.2. competences	Computational physics abilities
_	Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Specifically equipped laboratory

0. mequireu speen	
Professional	1. Identification and adequate use of the specific laws and concepts of nonlinear
competencies	optics
	2. Solving physics problems in given conditions
	<b>3.</b> Creative use of acquired knowledge for understanding and modelling of nonlinear
	processes and for designing optical systems and experimental set-ups for their observation
	<ol> <li>Analysis and communication of scientific data, communication for physics popularisation.</li> </ol>
	5. Use and development of specific software tools
Transversal	6. Efficient use of scientific information and communication resources for
competencies	professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

## 7. Course objectives

7. Course objectives	
7.1. General objective	Introduction and analysis of the specific physical processes in nonlinear
	optics and of the experimental conditions for their observation
7.2. Specific objectives	Study of parametric nonlinear optical phenomena in media with
	susceptibilities of the second and third order.
	Correct use of the coupled mode formalism
	Highlighting at each chapter the applications of the studied phenomena
	and of the required experimental set-ups in order to stimulate the creative
	and critical thinking for solving practical issues.

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Introductive: Maxwell equations in dielectric media. Polarization mechanisms. Parametric nonlinear optical phenomena	Systematic exposition - lecture. Examples.	4 hours
Birefringent crystals. The refractive index ellipsoid. Light propagation in anisotropic media. Phase matching conditions	Systematic exposition - lecture. Examples.	4 hours
Second harmonic generation. The second order nonlinear polarization tensor	Systematic exposition - lecture. Examples.	2 hours
Coupled-mode formalism. Efficiency of second harmonic generation; designing an optical system for maximizing the efficiency	Systematic exposition - lecture. Examples.	3 hours
Coupled-mode formalism for three-wave mixing. Examples of sum- and difference-frequency generation, parametric oscillations	Systematic exposition - lecture. Examples.	3 hours
Linear and quadratic electro-optic effects. Symmetry of the polarization tensor. Polarization matrices. Aplications in electromagnetic field modulation	Systematic exposition - lecture. Examples.	4 hours
Coupled-mode formalism for four-wave mixing. Examples of third-harmonic generation, phase conjugation	Systematic exposition - lecture. Examples.	2 hours
Pulse propagation in nonlinear media. Propagation	Systematic exposition -	6 hours

regimes. Optical solitons	lecture. Examples.			
References:	·	•		
1 R Dabu I Cruia A Stratan Notiuni fundamentale de ontică neliniară și lucrări de laborator				

- R. Dabu, I. Gruia, A. Stratan, Noțiuni fundamentale de optică neliniară și lucrări de laborator, Editura Univ. Bucuresti, 2005
- **2.** B.E.A. Saleh, M.C. Teich, *Fundamental of Photonics*, 2nd edition, Wiley, 2007, Chapter 21: Nonlinear Optics
- 3. G. New, *Introduction to Nonlinear Optics*, Cambridge University Press, 2011
- 4. R. Boyd, Nonlinear Optics, 3rd edition, Academic Press, 2008
- **5.** C. Manzoni, G. Cerullo, Design criteria for ultrafast optical parametric amplifiers, J. Opt. 18, 103501, 2016, acces liber
- 6. D. Dragoman, *Optoelectronica integrata*, Editura Univ. Bucuresti, 2003
- 7. D. Dragoman, Lecture notes

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Birefringence in uniaxial crystals. Phase matching in parametric nonlinear phenomena. Collinear and noncollinear configurations	Exposition. Guided work	4 hours
Symmetry properties of the susceptibility tensor Examples. Effective susceptibility	Exposition. Guided work	4 hours
Conversion efficiency in parametric nonlinear phenomena. Angular and spectral acceptances	Exposition. Guided work	2 hours
Symmetry properties of the electro-optic tensor. Examples. Induced birefringence	Exposition. Guided work	4 hours
Quantum theory of the nonlinear susceptibility. Nonlinear optics in the two-level approximation	Exposition. Guided work	6 hours
Bibliography		

### Bibliography:

- 33. R. Dabu, I. Gruia, A. Stratan, *Noțiuni fundamentale de optică neliniară și lucrări de laborator*, Editura Univ. Bucuresti, 2005
- 34. R. Boyd, Nonlinear Optics, 3rd edition, Academic Press, 2008
- 35. G. New, Introduction to Nonlinear Optics, Cambridge University Press, 2011
- 36. D. Dragoman, Problem set

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Electro-optic effect	Guided practical work	4 hours
Pyro-electric effect	Guided practical work	4 hours

Bibliography:

A. Yariv, Quantum Electronics, Ed. John-Wiley and Sons, 1989

O.G. Vlokh, On the dispersion of the electro–optic coefficient in ADP and KDP crystals, Kristallografiya **7**, 632–633, 1962

S.B. Lang, Pyroelectricity: From ancient curiosity to modern imaging tool, Phys. Today 58, 31, 2005 J.I. Sirotin, M.P. Saskolskaia, *Fizica Cristalelor*, Ed. Enciclopedică, București, 1981

8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

# **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is designed to lead to the formation of instrumental-application specific competences (such as the design of optical systems for special applications; the use of models and simulation methods, as well as generating and investigation techniques, of electromagnetic fields with relevant

characteristics for certain applications), of interest for research institutes in Laser Physics and/or Physics of Materials and education. Because of the importance of the course for modern applications of high-power lasers, the content and the teaching methods have been put into correspondence with similar courses taught at other universities (Univ. Friedrich Schiller Jena, Germany, Institute of Optics, Univ. of Rochester, USA, Institut d'Optique, Palaiseau, France) as well as with the experimental facilities of the research institutes on the Măgurele platform

### 10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în
10.4. Lecture	- Clarity, coherence and concision	Written exam	final mark 50%
	of exposition; - Correct use of physical models and of specific mathematical methods; - Ability to exemplify		
10.5.1. Tutorials	- Use of specific physical and mathematical methods for solving a given problem;	Written exam	25%
10.5.2. Practicals	- Use and correct application of experimental techniques; - Data interpretation	Exam	25%
<b>10.5.3. Project</b> [if applicable]			
10.6. Minimal requirem	ents for passing the exam		
Requirements for mark			
	ts indicated as required for obtaining m ls and mark 5 at colloquim	ark 5 at the written exam	

Tutorials/Practicals instructor(s) Date Teacher's name and signature

25.05.2019

Prof. dr. Daniela Dragoman

name(s) and signature(s)

Prof. dr. Daniela Dragoman

Conf. dr. Ciceron Berbecaru

Date of approval 10.06.2019

Head of department, Conf. dr. Petrică Cristea
## DO.201.2 Physics of dielectric materials

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title Physics of di				ielectric materia	als				
2.2. Teacher			Conf. Dr. Cice	ron Be	erbecaru				
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Conf. Dr. Cicei	ron Be	erbecaru				
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1	evalı	lation	Ε	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	0/28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Examination					4
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics,
	Thermodynamics and statistical physics
4.2. competences	Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Specifically equipped laboratory

#### 6. Acquired specific competencies

Drafagaianal	Q Identification and adaptate use of the specific law reard concerns of dialectric
Professional	<b>8.</b> Identification and adequate use of the specific laws and concepts of dielectric
competencies	materials physics
	<b>9.</b> Solving physics problems in given conditions
	<b>10.</b> Creative use of acquired knowledge for understanding and modelling of physical
	phenomena associated to dielectrics
	<b>11.</b> Analysis and communication of scientific data, communication for physics
	popularisation.
	<b>12.</b> Use and development of specific software tools
Transversal	<b>13.</b> Efficient use of scientific information and communication resources for
competencies	professional formation in English.
	<b>14.</b> Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

#### 7. Course objectives

i course objectives	
7.1. General objective	Introduction and analysis of the specific physical properties of dielectrics
7.2. Specific objectives	Study of physical properties of dielectrics. Applications
	Highlighting the applications of the studied phenomena and of the
	required experimental set-ups in order to stimulate the creative and
	critical thinking for solving practical issues.

#### 8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Electric polarization. Electrical field in dielectrics.	Systematic exposition -	4 hours
Linear response.	lecture. Examples.	4 110015
Mechanisms of electric polarization: electronic, ionic,	Systematic exposition -	8 hours
orientational, polarization of space charge.	lecture. Examples.	
Dispersion of optical polarization. Optical properties of	Systematic exposition -	4 hours
dielectrics.	lecture. Examples.	
Relations between optical constants: refraction index,	Systematic exposition -	3 hours
dielectric permitivity, absorption coefficient,	lecture. Examples.	
conductivity.		
Dynamical properties of dielectrics: dielectric losses,	Systematic exposition -	3 hours
optical conductivity.	lecture. Examples.	
Dielectric spectroscopy: complex impedance,	Systematic exposition -	6 hours
equivalent electrical circuit, Nyquist diagrams.	lecture. Examples.	
References:		
<b>8.</b> I. Bunget, M.Popescu, <i>Physics of solid dielectric</i>	cs (Elsevier, Amsterdam 1984)	
9. A.Jonsker, Dielectric relaxation in solids, (Chell	lsea Dielectric Press, London, 198	3).
<b>10.</b> A.Ioanid, <i>Probleme de fizica dielectricilor</i> , (Ed.	Univ.Bucuresti, 2002)	
<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning	Observations
	techniques	Observations
	Exposition. Guided work	

Bibliography: 37.		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Tests of Clausius-Mossotti and Langevin-Debye relations	Guided practical work	4 ore

Analysis of experimental data by Kramers-Kronig		
transform and by using relations between optical constants	Guided practical work	4 ore
Reflectance spectra	Guided practical work	4 ore
Impedance spectra. Analysis of complex impedance and of equivalent electric circuit	Guided practical work	4 ore
Optical properties of nanostructured systems	Guided practical work	4 ore
Cole-Cole diagrams	Guided practical work	4 ore
Bode and Nyquist diagrams	Guided practical work	4 ore
Bibliography:		
<b>8.4. Research project</b> [if applicable]	Teaching and learning	1

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is designed to lead to the formation of instrumental-application specific competences (use of models, simulation methods and investigation techniques specific to dielectrics) of interest for research institutes in Physics of Materials and education. Because of the importance of the course for modern applications, the content and the teaching methods have been put into correspondence with similar courses taught at other universities as well as with the experimental facilities of the research institutes on the Măgurele platform

#### **10.** Assessment

		10.2.4	10.3.		
Activity type	10.1. Assessment crite	eria 10.2. Assessment methods	Weight în		
		methods	final mark		
10.4. Lecture	- Clarity, coherence and cor	ncision Written exam	50%		
	of exposition;				
	- Correct use of physical me				
	and of specific mathematica	l			
	methods;				
	- Ability to exemplify				
10.5.1. Tutorials					
10.5.2. Practicals	- Knowledge and use of	Laboratory	50%		
	experimental techniques;	colloquium			
	- Data interpretation				
<b>10.5.3. Project</b> [if applic	cable]				
10.6. Minimal requirem	nents for passing the exam				
Requirements for mark	x 5 (10 points scale)				
	cts indicated as required for obtaining	mark 5 at the written exam			
Attendance of all practic	als and mark 5 at colloquim				
Date	Teacher's name and signature	Tutorials/Practicals instruct	or(s)		
25.05.2019	Conf. dr. Ciceron Berbecaru	name(s) and signature(s)			
20.00.2010	Com, ar, cicción Derbecara	Conf. dr. Ciceron Berbecaru	1		
Date of approval	Head of department,				
10.06.2019	Conf. dr. Petrică Cristea				

## DO.202.1 Computational methods for electronic structures of condensed systems

#### 1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and
	nanostructures
1.7. Mode of study	Full-time study

#### 2. Course unit

2.1. Course title		Computationa			al methods for electronic structures of condensed systems				
2.2. Teacher			Conf. dr. George Alexandru NEMNES						
2.3. Tutorials instructor(s)			Conf. dr. Geor	ge Ale	xandru NEM	NES			
2.4. Practicals instructor(s)									
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	1	evalı	lation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS);
 ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study	, T				hours
3.2.1. Learning by using one's own cou	irse no	otes, manuals, lecture	notes,	bibliography	20
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		20
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewoi	rks		25
3.2.4. Examination					4
3.2.5. Other activities					
3.3. Total hours of individual study	78				

3.4. Total hours per semester	138
3.5. ECTS	6

#### 4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Solid State Physics I and II, Thermodynamics and
	statistical physics, Electrodynamics, Physical Electronics, Equations of
	mathematical physics
4.2. competences	38. Using of software tools for data analysis/processing

Sin for rectare	5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
-----------------	------------------	--------------------------------------------------------------------

5.2. for tutorials/practicals	-
-------------------------------	---

#### 6. Acquired specific competencies

<b>15.</b> Identification and adequate use of computational <i>ab initio</i> tools for condensed
matter systems.
<b>16.</b> Solving physics problems in given conditions.
<b>17.</b> Creative use of acquired physical knowledge to understand first principles computational methods.
<b>18.</b> Analysis and communication of scientific data, communication for physics popularization.
<b>19.</b> Use and development of specific software tools.
<ul> <li>20. Efficient use of scientific information resources and of communication and of resources for professional formation in English.</li> <li>21. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.</li> </ul>

#### 7. Course objectives

7.1. General objective	Understanding of first principles methods and computational tools.
7.2. Specific objectives	- Understanding the approximate methods for many-body systems –
	perturbative and variational based methods.
	- Understanding the density functional theory method.
	- Ability to assimilate, analyse and compare diverse physical phenomena,
	employing fundamental principles.
	- Ability of analyse and interpret numerical data, especially concerning
	band structure calculations and optical properties on the bases of DFT
	codes and to formulate rigorous theoretical conclusions.
	- Ability to employ mathematical and numerical models for modelling the
	physical phenomena.
	- Ability to use theoretical methods in modelling various physical systems
	of interest.
	- Ability to develop computer programs for modelling electronic structure
	of materials

#### 8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction. Classification of many-body approximate methods.	Systematic exposition - lecture. Examples.	2 hours
The problem of electron correlations.	Systematic exposition - lecture. Examples.	4 hours
The density functional theory (DFT). Hohenberg-Kohn theorems.	Systematic exposition - lecture. Examples.	2 hours
Kohn-Sham method. Kohn-Sham equations.	Systematic exposition - lecture. Examples.	2 hours
Functionals for the exchange and correlation terms. The local density approximation (LDA) and local spin density approximation (LSDA). The GGA	Systematic exposition - lecture. Examples.	4 hours

approximation.		
Orbital dependent functionals: self-interaction	Systematic exposition -	4 hours
correction (SIC) and LDA+U approximation. Hybrid	lecture. Examples.	
functionals.		
Ab initio numerical techniques. Pseudopotentials.	Systematic exposition -	4 hours
	lecture. Examples	
Semilocal pseudopotentials. Ultrasoft	Systematic exposition -	2 hours
pseudopotentials.	lecture. Examples	
Extensions: time dependent density functional theory.	Systematic exposition -	2 hours
-	lecture. Examples	
GW approximation. Applications.	Systematic exposition -	2 hours
	lecture. Examples	

**References:** 

- **11.** H. Bruus, K. Flensberg, *Many-Body Quantum Theory in Condensed Matter Physics: An Introduction* (Oxford University Press, Oxford 2004).
- **12.** R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2004).
- **13.** W. Nolting, *Fundamentals of Many-body Physics* (Springer Verlag, Berlin, 2009).

<b>8.2. Tutorials</b> [main tutorial subjects]	Teaching and learning techniques	Observations
Elaboration of a numerical code to implement the	Exposition. Guided work	4 ore
Hartree-Fock method.	<b>^</b>	
SIESTA method: presentation. Advantages and	Exposition. Guided work	4 ore
disadvantages of the method.		
SIESTA method for band structure calculations in bulk	Exposition. Guided work	4 ore
semiconductors and nanostructures.	<b>^</b>	
SIESTA method for investigating defects in	Exposition. Guided work	4 ore
semiconductor systems.	<b>^</b>	
Calculation of phonon band structures.	Exposition. Guided work	4 ore
Calculation of optical properties.	Exposition. Guided work	4 ore
Ab initio techniques for magnetic materials.	Exposition. Guided work	4 ore
Bibliography:		
SIESTA Manual, https://departments.icmab.es/lee	em/siesta/	
<b>8.3. Practicals</b> [research subjects, projects]	Teaching and learning	Observations
o.o. ructiculo [rescuren subjects, projects]	techniques	
	Guided practical work	4 ore

8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark				
<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific examples;</li> </ul>	Written and oral exam	50%				
- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%				
<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	xx%				
10.6. Minimal requirements for passing the exam						
<b>Requirements for mark 5 (10 points scale)</b> Correct solutions to indicated subjects (for mark 5) in final exam						
	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific examples;</li> <li>Use of specific physical and mathematical methods and techniques;</li> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	- Explicitness, coherence and concision of scientific statements;       Written and oral exam         - Correct use of physical models and of specific mathematical methods;       Homework, research projects         - Ability to analyse specific examples;       Homework, research projects         - Use of specific physical and mathematical methods and techniques;       Homework, research projects         - Knowledge and correct use of specific experimental techniques       Colloquium         - Data processing and analysis;       Image: Colloquium         ments for passing the exam       K 5 (10 points scale)				

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)	
10.10.2019	Conf. dr. George Alexandru		
	Nemnes	Conf. dr. George Alexandru Nemnes	
Date of approval	Head o	of department,	
	Conf. dr. Petrică Cristea		

## DO.202.2 Advanced methods in statistical physics

#### 1. Study program

1. Study program		
1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma	
	and Lasers	
1.4. Field of study	Physics	
1.5. Course of study	Master of Science	
1.6. Study program	Theoretical and Computational Physics (in English)	
1.7. Study mode	Full-time study	

#### 2. Course unit

2.1. Course unit t	itle	Advanced methods in statistical physics							
2.2. Teacher			Conf. dr. Alexandru Nicolin						
2.3. Tutorials/Pra	.3. Tutorials/Practicals instructor(s)			Conf. dr. Alexan	dru Ni	colin			
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	1	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester56Lecture28Practicals/Tutorials				Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					35
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study 90					

	50
3.4. Total hours per semester	150
3.5. ECTS	6

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

#### 6. Specific competences acquired

o. opecnic comp	ctenees acquirea
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of statistical quantum mechanics for strongly interacting systems
	<ul> <li>Solving problems of physics under given conditions</li> </ul>
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	modern nuclear physics
	• Ability to use this knowledge in interpretation of experimental result
	• Understanding the role of the interaction, of the particle nature and of the dimensionality
	over the dynamical properties
	• Developing the computational abilities and a sound theoretical knowledge of the studied
	problems
Transversal	• Efficient use of sources of information and communication resources and training assis-
competences	tance in a foreign language
_	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

#### 7. Course objectives

7. Course objectives		
7.1. General objective	- Understanding the specific feature of the quantum systems composed from strongly correlated identical particles	
	Developing the capability to assimilate, analyse and compare	
	diverse phenomena, starting from basic principles	
	- Developing the ability to analyse and interpret the experimental	
	data and to formulate rigorous theoretical conclusions	
	- Developing the ability to apply mathematical models and	
	adequate numerical procedures	
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum many-body systems adapted to strongly interacting systems	
	Acquire the skills to describe and calculate the physical properties of	
	quantum many-body systems involved in different physical conditions.	

#### 8. Contents

o. Contents		
<b>8.1. Lecture</b> [chapters]	Teaching techniques	Observations/ hours
The formalism of the Green functions:		
General properties of Green functions (symmetry,	Systematic exposition -	8 hours
Lehman representations), physical interpretation	lecture. Examples	o nours
for the retarded Green function.	_	
The formalism of the density functional:		
The theory of the density functional. Hohenberg-	Systematic expection	
Kohn theorems. The Kohn-Sham equations.	Systematic exposition - lecture. Examples	6 hours
Approximate functionals. Introduction in the theory	lecture. Examples	
of the time dependent density functional.		
The dynamics of the Bose-Einstein condensate		
The Gross-Pitaevskii equation. Elementary	Systematic exposition -	6 hours
excitations and collective modes. Solitons. Traps	lecture. Examples	onours
for condensates for finite temperature.	_	
From the integral Hall effect to the fractional Hall	Systematic exposition -	6 hours
effect : Strong correlated systems and the	lecture. Examples	6 hours

quasiparticle concept. Laughlin theory. The theory of compound fermions.		
Ginzburg–Landau theory of superconductivity.		
Basic equations. From type-I superconductor to	Systematic exposition -	4 hours
type-II superconductors.	lecture. Examples	- 110UIS

Bibliography:

- **22.** E. Lipparini, *Modern many-particle physics. Atomic gases, quantum dots and quantum fluids*, World Scientific, 2003
- 23. R.G. Paar, W. Yang, Density functional theory for atoms and molecules, Oxford UP,1989
- 24. C.A. Ullrich, *Time-Dependent Density Functional Theory*, Oxford UP, 2012

**25.** J.K. Jain, *Composite fermions*, Cambridge UP, 2007

- 26. T. Chakraborty, P. Pietilainen, The quantum Hall effects, Fractional and Integral, Springer 1995
- 27. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge UP, 2008
- 28. Z.F. Ezawa, Quantum Hall effects, World Scientific, 2007
- 29. Fetter A.L., J.D. Walecka, Quantum theory of Many Particle systems (McGraw Hill, New-York)
- **30.** W. Buckel, R. Kleiner, *Superconductivity: Fundamentals and Applications*, WILEY-VCH Verlag GmbH 2004

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Galitskii-Migdal theorems. The relation with the observables. Differential equations. Correlation functions:definition, general properties, the similarity with the Green functions.	Problem solving	6 hours
Applications of the Green formalism for various systems. The Thomas-Fermi approximation and its extensions	Problem solving	4 hours
Applications of Density Functional Theory	Problem solving	4 hours
Collective dynamics of Bose-Einstein condensates	Problem solving	4 hours
The theory of compound fermions.	Problem solving	4 hours
Superconductivity: surface energy and thermodynamic critical field in Ghinzburg-Landau theory. Vortex lattice. Josephson tunnelling.	Problem solving	6 hours
Bibliography:		

A.S. Alexandrov *Theory of Superconductivity*. *From Weak to Strong Coupling*, IOP Publishing Ltd 2003

# 9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- Clarity and coherence of	Written test and oral	
	exposition	examination	
	- Correct use of the methods/		60%

	physical models - The ability to give specific examples			
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%	
10.6. Minimal requirements for passing the exam				
Requirements for mark 5 (10 points scale)				
At least 50% of exam score and of homeworks.				

Date 10.06.2019	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
10.00.2019	Conf. dr. Alexandru Nicolin	Conf. dr. Alexandru Nicolin
Date of approval		Head of Department

Date of approval 10.06.2019

Prof.dr. Virgil Baran

#### DO.207.2 Physics of Semiconductor Devices

1. Description of the program	
1.1. Higher education institution	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid-State Physics, and Biophysics
1.4. Field of Study	Physics
1.5. Level	Master of Science
1.6. Academic Program Title	Physics of Advanced Materials and Nanostructures
1.7. Attendance	Required according to the schedule

#### 1 Description of the program

#### 2. Information on course

2.1. Title	2.1. Title Physics of S				emiconductor	Devi	ces		
2.2. Instructor (lectures)			Associate Prof	dr. P	etrică Cristea	a			
2.3. Instructor (recitation classes))									
2.4. Instructor (practical activities)			Associate Prof	. dr. P	etrică Criste	a			
2.5. Year of		2.6.		2.7.			2.8.	Content ¹⁾	DS
study	2	Semester	4	Evalı	lation	E	Course type	Attendance ²⁾	DO

¹⁾ thoroughgoing study (DA), synthesis discipline (DS); ²⁾ mandatory discipline (DI), optional discipline (DO), facultative discipline (DFac)

#### 3. Time allocated (hrs/semester)

3.1. hrs./week	4	lectures	2	practical activities	2
3.2. Total hrs./semester	56	lectures	28	practical activities	28
Time distribution on student activities					hrs.
3.2.1. Reading of manuals, lecture note	s, refe	rences			20
3.2.2 Documenting at library and using electronic resources			20		
3.2.3. Completing home work for practical activities and writting short reports on experiments			25		
3.2.4.Evaluations			4		
3.2.5. Other activities					
2.2. # hrs. allocated to individual study	CL.				

3.3. # hrs. allocated to individual study	65
3.4. # hrs./semester	125
3.5. Allocated credits to the course	5

#### 4. Prerequisites

4.1. curriculum	Attending the lectures on: <i>Electricity and Magnetism</i> , <i>Thermodynamics and</i>
	Statistical physics, Electronics, Quantum Mechanics, Solid-State Physics
4.2. Skills	Use of software packages for data analysis and processing

#### **5. Requirements**

5.1. lectures	Multimedia room (video projector)
5.2. for conducting the	- Multimedia room (video projector)-
practical activities	3 to4 pc stations (minimum core I3)
	- OS Linux sau Windows 7

#### 6. Specific skills acquired

Professional skills	<ol> <li>Using the laws of classical electromagnetism and of the statistical notions to describe the semi-classical and quantum behavior of modern semiconductor devices.</li> <li>Creatively applying the knowledge acquired in order to understand and model the parameters and characteristics of modern semiconductor devices.</li> <li>Communicate and analyze didactic and scientific information on physics.</li> <li>Ability to make use of specific scientific software packages.</li> </ol>
Attitudinal skills	<ul> <li>35. Efficient use of information sources, communication resources and vocational training, including in a language of international circulation.</li> <li>36. Carrying out professional tasks in an efficient and responsible manner, in compliance with the specific legislation, ethics and deontology.</li> </ul>

#### **7. The course aim at** (based on the grid of specific skills accumulated)

	Familiarize students with the operating principles and the				
7.1. General	applications of the main semiconductor devices used by modern				
	electronic circuits.				
	Understanding of the general principles underlying the operation of				
	semiconductor devices.				
7.9 Specific	Introducind students to modern technologies related to synthesis of				
7.2. Specific	semiconductor materials.				
	Familiarize students with software packages used in semiconductor				
	device modeling.				

#### 8. Content

8.1. Lectures	Teaching method	hrs.
Types of semiconductor materials	Systematic presentation - lecture	2
Main technologies dedicated to semiconductor materials	Systematic presentation - lecture	2
p-n Junctions	Systematic presentation - lecture	2
Bipolar transistors	Systematic presentation - lecture	2
MOSFET structures	Systematic presentation - lecture	2
Structuri MESFET si MODFET	Systematic presentation - lecture	2
Tunnel Diodes	Systematic presentation - lecture	4
Resonant Devices	Systematic presentation - lecture	4
Photonic devices	Systematic presentation - lecture	2
Modeling of Semiconductor Devices. Processing of the results and extracting physical data of interest	Systematic presentation - lecture	6

**References**:

1. S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, Wiley Interscience 2007

2. S. M. Sze, Semiconductor Devices, Physics and Technology, John Wiley&Sons 2002

3. M. Dragoman, D. Dragoman – *Nanoelectronics: Principles and Devices*, Artech House, 2nd edition, Boston, U.S.A., 2009

4. I. Munteanu, *Fizica solidului*, Editura Univ. Bucuresti, 1993

5. L. Ion, *Solid-State Physics* - Lecture Notes

8.2. Recitation classes [topics discussed]	Teaching method	hrs.
8.3. Practical activities [laboratory topics and		
projects]	Teaching method	hrs.
Numerical study of the influence of doping on		
electrical properties	Assisted practical activity	2
Numerical study of p-n junctions and multi-junction		
structures. The influence of size reduction	Assisted practical activity	4
Numerical study of bipolar transistors	Assisted practical activity	8
	Assisted practical activity	4
Simulation and design of MOSFET structures	Assisted practical activity	6
Simulation and design of MODFET structures	· · · · · · · · · · · · · · · · · · ·	4
Simulation and design of resonant structures References	Assisted practical activity	4
	ahralam Jahr Wiley & Cara 2002	
<ol> <li>S. M. Sze, Semiconductor Devices, Physics and Te</li> <li>P. Cristea, Dispozitive Electronice Speciale, Vol.</li> </ol>		VIVID
<b>12.</b> nanoHUB: https://nanohub.org/	1, Eultura Olliv. Bucuresti, 1999	
<b>8.4. Project</b> [only for those disciplines having a	Teaching method	hrs.
semester project included in the curriculum]		

9. Corroborating the contents of the discipline with the expectations of main representatives of epistemic communities, professional associations and representative employers in the field related to the program
To decide about the content, the teaching/learning methods, the instructor made the content compatible to similar subjects taught at universities in the country and abroad (University of Illinois, University of Cambridge, MIT). The content of the discipline complies to the requirements of

#### 10. Evaluations and gradind

employment in research institutes in physics.

Type of activity	10.1. Evaluation items	10.2. Evaluation methods	10.3. Pondere din nota finală
10.4. Lectures	<ul> <li>Exposure clarity, coherence and conciseness</li> <li>Understand correctly the principles, models, formulas and relations of calculation</li> <li>Ability to provide and make use of relevant arguments</li> </ul>	oral examination	50%
10.5.1. Recitation classes			

10.5.2. Practical activities	- Ability to use software packages as WinGreen, RTD, HEMT, SelfHEMT software packages	Practical test	50%			
<b>10.5.3. Project</b> [[only						
for those disciplines						
having a semester						
project included in the						
curriculum]]						
10.6. Minimum standard of performance						
Getting a minimum score of 5						
Completing all required practical work and passing of the practical test (at least a score 5)						

Completing all required practical work and passing of the practical test (at Correct answers for the required questions at the final (at least a score 5).

Completed on 10.06.2019

Instructor's signature

Conf. dr. Petrica Cristea

Head of the Department, Associate Prof. dr. Petrică Cristea

## DO.204.2 Electrical and optical characterization of semiconductors

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title	Course title Physics of m				esoscopic system	ms			
2.2. Teacher			Conf.dr. Florin	Stanc	ulescu				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor(	(s)			Lect. Dr. Sorin	a Iftin	nie		
2.5. Year of		2.6.		2.7.	Гуре of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2	evalı	ation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	k in curriculum 4 d		2	Tutorials/Practicals	0/2
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	0/28
Distribution of estimated time for study			-	hours	
3.2.1. Learning by using one's own course n		otes, manuals, lecture	notes,	bibliography	25
3.2.2. Research in library, study of electronic		resources, field resea	arch		25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			40		
3.2.4. Examination			4		
3.2.5. Other activities					
2.2. Total have after dividual study					

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

#### 4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics
4.2. competences	<b>39.</b> Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-laboratory set-ups for electrical and optical characterization of
_	semiconductors

#### 6. Acquired specific competencies

of riequired speem	
Professional competencies	<b>37.</b> Identificartion and adequate use of physics laws in a given context; identification and adequate use of notions and specific physics laws for semiconductors.
•	<b>38.</b> Solving physics problems in given conditions.
	<b>39.</b> Creative use of acquired physical knowledge to understand and to construct models for physical processes and properties of semiconductors.
	<b>40.</b> Analysis and communication of scientific data, communication for physics popularisation.
	<b>41.</b> Use and development of specific software tools.
Transversal competencies	<ul> <li>42. Efficient use of scientific information resources and of communication and of resources for professional formation in English.</li> <li>42. Efficient and responsible implementation of professional tasks a rith charge of formation.</li> </ul>
	<b>43.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

#### 7. Course objectives

7. Course objectives	
7.1. General objective	Introduction and analysis of the physical methods in semiconductor
	characterisation
7.2. Specific objectives	Study of structure of measurement systems and of uncertainty in
	semiconductor measurements.
	Analysis of most important electrical characterisation methods of
	semiconductors. Analysis of most important optical characterisation
	methods of semiconductors.
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

#### 8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Evaluation of the uncertainty of measurement;	Systematic exposition - lecture. Examples.	2 hours
Noise in measurement systems;	Systematic exposition - lecture. Examples.	2 hours
Resistivity measurement (direct method, two probe method, four probe method, van de Pauw method). Temperature dependence;	Systematic exposition - lecture. Examples.	6 hours
Determination of the carrier concentration, the type of conduction and the mobility of the charge carriers;	Systematic exposition - lecture. Examples.	4 hours
Determination of the lifetime and the diffusion length of minority carriers;	Systematic exposition - lecture. Examples.	2 hours
Characterization of the electrically active centers by the DLTS method;	Systematic exposition - lecture. Examples.	2 hours
Interaction of electromagnetic radiation with semiconductors. Optical coefficients;	Systematic exposition - lecture. Examples.	2 hours
Spectrophotometric methods for the characterization of	Systematic exposition -	2 hours

semiconductors;	lecture. Examples.	
Measurement of the impurities concentration and of the band gap energy;	Systematic exposition - lecture. Examples.	2 hours
Ellipsometric methods for the characterization of semiconductors;	Systematic exposition - lecture. Examples.	2 hours
SUPPLEMENTARY SUBJECTS		
Roughness and granulation analysis;	Systematic exposition - lecture. Examples.	1 hours
The use of SNOM and confocal microscopy in the characterization of semiconductors;	Systematic exposition - lecture. Examples.	1 hours

**References:** 

- 14. Alain C. Diebold "Handbook of Silicon Semiconductor Metrology", Marcel Dekker, 2001;
- 15. K Schroder, Semiconductor Material And Device Characterization, Wiley, 2006
- **16.** H. Czichos, T. Sait, Leslie Smith, "Springer Handbook of Materials Measurement Methods", Springer 2006;
- **17.** W.R.Runyan, T.J.Shaffner, "Semiconductor Measurements and Instrumentation", McGraw-Hill, NY,1997;
- 18. John G. Webster, "The Measurement, Instrumentation, and Sensors Handbook", CRC Press 1999;
- **19.** Walt Boyes, "Instrumentation Reference Book", BUTTERWORTH HEINEMANN (Elsevier), 2003;
- **20.** Annual Book of ASTM Standards, vol. 10.04 Electronics (I) 2006
- 21. Annual Book of ASTM Standards, vol. 10.05 Electronics (II) 2006
- 22. Semyon G. Rabinovich, "Evaluating Measurement Accuracy", Springer, 2010
- 23. Toru Yoshizawa, "Handbook of Optical Metrology", CRC Press Taylor & Francis 2009
- 24. Paolo Fornasini, "The Uncertainty in Physical Measurements", Springer, 2008
- 25. Roy M. Howard, "Principles of Random Signal Analysis and Low Noise Design", Wiley 2002
- **26.** Horst Czichos, Tetsuya Saito, Leslie Smith "Springer Handbook of Metrology and Testing", Springer 2011;
- **27.** Fridman, A.E., "The Quality of Measurements", Springer 2012;
- 28. Vladimir Murashov, John Howard, "Nanotechnology Standards", Springer 2011;

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Determination of semiconductor resistivity by		4 hours
direct method, method of two probes, method of		
four probes, method of van Pauw. Evaluation of the	Guided practical work	

measurement uncertainty of resistivity		
Determination of the type conduction by Hall		4 hours
effect, by the hot / cold probe method, the rectifier	Guided practical work	
contact method and the three probe method		

Determination of mobility	Guided practical work	4 hours
Measurement of carrier concentration by CV method.	Guided practical work	4 hours
Determination of the life time by the method of photoconduction relaxation	Guided practical work	4 hours
Determination of some physical quantities, characteristics of semiconductors, by transmission spectrophotometry	Guided practical work	4 hours
ADDITIONAL WORKS		
Analysis of roughness and granulation by SNOM, AFM, and SEM microscopy methods;	Guided practical work	4 hours
8.4. Research project [if applicable]	Teaching and learning	
	techniques	Observations
Bibliography: Alain C. Diebold "Handbook of Silicon Semicondu	ctor Metrology". Marcel Dekk	er. 2001:
K Schroder, Semiconductor Material And Device C		,,

W.R.Runyan, T.J.Shaffner, "Semiconductor Measurements and Instrumentation", McGraw-Hill, NY,1997;

Annual Book of ASTM Standards, vol. 10.04 - Electronics (I) 2006

Annual Book of ASTM Standards, vol. 10.05 - Electronics (II) 2006

Semyon G. Rabinovich, "Evaluating Measurement Accuracy", Springer, 2010

Toru Yoshizawa, "Handbook of Optical Metrology", CRC Press Taylor & Francis 2009

Paolo Fornasini, "The Uncertainty in Physical Measurements", Springer, 2008

**9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific mathematical methods;</li> <li>Ability to analyse specific examples;</li> </ul>	Written and oral exam	50%
10.5.1. Tutorials			50%
10.5.2. Practicals	- Knowledge and correct use of	Colloquium, Homework,	50x%

	specific experimental techniques - Data processing and analysis;				
<b>10.5.3. Project</b> [if applicable]					
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
Correct solving of subjects	indicated as required for obtaining mark 5.				

Date

Teacher's name and signature

25.06.2019

Conf.dr. Florin Stanculescu

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect.dr.Sorina Iftimie

Date of approval

Head of department, Conf. dr. Petrică Cristea

## DO.207.1 Special electronic and opto-electronic devices

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

#### 2. Course unit

2.1. Course title Special electr				ronic and opto-el	lectror	nic devices			
2.2. Teacher			Prof. univ. dr. S	Stefan	ANTOHE				
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)		Prof. univ. dr. Stefan ANTOHE							
2.5. Year of		2.6.	2.7. Type of				2.8. Type	Content ¹⁾	DS
study	2	Semester	1 evaluation		Е	of course unit	Type ²⁾	DO	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### **3. Total estimated time** (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester	40	distribution: lecture	20	Tutorials/Practicals	0/20
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					31
3.2.4. Examination					4
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	81
3.4. Total hours per semester	125
3.5. ECTS	5

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electricity and magnetism, Physics of Semiconductors, Physics of Organic Thin Films
4.2. competences	Electrical measurements. Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-Experimental setups from laboratories of MDEO Center

#### 6. Acquired specific competencies

0. riequiteu speen							
Professional	<b>44.</b> Identificartion and adequate use of physics laws in a given context; identification						
competencies	and adequate use of notions and specific physics laws for electronic devices based						
	on both organic and inorganic thin films.						
	<b>45.</b> Understanding the mechanism of charge carrier transport at interfaces:						
	Metal/Semiconductor; Semiconductor/Semiconductor.						
	<b>46.</b> Knowledge to understanding of the physical processes in hybrid structures base						
	on Organic/Inorganic thin films.						
	<b>47.</b> Analysis and communication of scientific data, communication for physics						
	popularisation.						
Transversal	<b>48.</b> Efficient and responsible implementation of professional tasks, with observance of						
competencies	the laws, ethics and deontology.						
	<b>49.</b> Efficient use of the available scientific information resources (specialized books						
	research papers, internet search)						
	<b>50.</b> Ability to communicate in English the scientific results to a broad audience in a						
	rigorous and clearly structured manner						

#### 7. Course objectives

7.1. General objective	Study of specific charge transport mecanisms in the electronic and optoelectronic devices based on organic and hybrid Organic/Inorganic thin films
7.2. Specific objectives	Theory of Depletion Layer at interface Metal/Semiconductor Study of charge transport mecanism at Metal/Semiconductor Interface. Analysis of specific charge transport models in Organic/Inorganic Interfaces. Highlighting of essential problems in understanding of excitonic mechanism for photogeneration in the organic photovoltaic cells

#### 8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
<ul> <li>Phyisical Processes at Metal/Semiconductor Interface:</li> <li>-Classification of the M/S contacts (ohmic contact, blocking contact);</li> <li>- Theory of the depletion layer;</li> <li>- Transport mechanism of the charge carriers through the M/S contact: (i) thermionic emission model of Bethe; (ii) Difussion model of Schottky; Mixt theory of thermionic</li> </ul>	Systematic exposition - lecture. Examples.	hours
emission and diffusion of Krowel and Sze. <b>Theory of Space Charge Limited Currents (SCLC)</b> –		6 hours
<ul> <li>Space Charge Limited Curents – conditions of appearence</li> <li>13. Curent –Voltage (I-V) characteristics of SCLC currents in a free traps solid</li> <li>14. I-V characteristics of SCLC in a solid with a discret distribution of traps in the Band Gap (BG)</li> <li>15. I-V characteristics of SCLC in a solid with an uniform trap distribution the (BG)</li> <li>16. I-V characteristics of SCLC in a solid with an exponential trap distribution the (BG)</li> </ul>	Systematic exposition - lecture. Examples.	
<ul> <li>Electrical properties of Organic/Inorganic Diodes (OI)</li> <li>17. Charge carrier transport mechanism in O/IDiodes</li> <li>18. The bipolar Current-Voltage (I-V) Characteristics</li> </ul>	Systematic exposition - lecture. Examples.	4 hours

of OI Diodes		
<b>19.</b> The O/I Admitance characteristics for a large range		
of frequency		
<b>20.</b> Semiconducting Organic Inorganic Surface		
Analysis Spectroscopy (SOISAS)		
Organic Photovoltaic Cells	Systematic exposition -	4 hours
-Photovoltaic effect in First generation of PV	lecture. Examples.	
-Photovoltaic Cells from Second generation of SC (based	_	
on A2-B6 compounds)		
- Photovoltaic Cells from Third generation of SC (based on		
organic semiconductors (i) Small molecules (ii) polymers		
and (iii) Bulkheterojunction basedon polymeric blends (iv)		
Photovoltaic Cells from forth generation of SC (based on		
nanostructured inorganic electrode sensitized with an		
organic semiconductor		

Bibliography:

**29.** S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).

- 30. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964.
- **31. S. Antohe**, Materiale și Dispozitive Electronice Organice (Editura. Universității din București, București, 1996)
- **32.** *S. Antohe*, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed.) (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1

<b>8.2. Laboratory</b> [main subjects of practical works]	Teaching and learning techniques	Observations
Non-Ohmic effect in M1/organic semiconductor/M2 structures	Measurements and data analysis and processing	4 ore
Determination of charge carrier transport parameters in an organic thin film	Measurements and data analysis and processing	4 ore
Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters	Measurements and data analysis and processing	4 ore
Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is	Measurements and data analysis and processing	4 ore
Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .	Measurements and data analysis and processing	4 ore

Bibliography:

- 40. S. Antohe. Physica Status Solidi A, 136:401, 1993.
- 41. Three-Layered Photovoltaic Cell With an Enlarged Photoactive Region of Codeposited Dyes, <u>S.</u> <u>Antohe</u>, V.Ruxandra, L.Tugulea, V.Gheorghe, D. Ionaşcu, Journal de Physique III France 6, 1133-1144, (1996)
- 42. S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu and V. A. Antohe, "Fizica si tehnologia materialelor semiconductoare Lucrari practice", Ars Docendi, Universitatea din Bucuresti, 165 pages, 2016, ISBN: 978-973-558-940-0
- 43. <u>A critical review of photovoltaic cells based on organic monomeric and polymeric thin film</u> <u>heterojunctions</u> By:<u>Antohe, S; Iftimie, S; Hrostea, L; Antohe, VA^l; Girtan, M, THIN SOLID FILMS</u> Volume: 642 Pages: 219-231 Published: NOV 30 2017

8.3. Research project [if applicable]	Teaching and learning techniques	Observations

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (University of Kent at canterbury, Hanover University, University of Angers. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### 10. Assessment

			10.3.	
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight în	
			final mark	
10.4. Lecture	<ul> <li>Explicitness, coherence and concision of scientific statements;</li> <li>Correct use of physical models and of specific methods;</li> <li>Ability to analyse specific examples;</li> </ul>	Written and oral exam	50%	
10.5.1. Tutorials				
10.5.2. Practicals	<ul> <li>Knowledge and correct use of specific experimental techniques</li> <li>Data processing and analysis;</li> </ul>	Colloquium	50%	
<b>10.5.3. Project</b> [if				
applicable]				
10.6. Minimal requirem	ents for passing the exam			
<b>Requirements for mark</b>	5 (10 points scale)			
-	ts indicated as required for obtaining mar	·k 5.		

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. univ. dr. Stefan ANTOHE	Prof. univ. dr. Stefan ANTOHE
		Head of department,
Date of approval 10.06.2019		Conf. dr. Petrică Cristea

## DO.207.2 Physics and Technology of Thin Films

#### 1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)/Physics of advanced materials and nanostructures
Full-time study

#### 2. Course unit

2.1. Course title <b>Physics and</b>				technology of th	nin fil	ms			
2.2. Teacher			Prof. dr. Ştefan Antohe						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Prof. dr. Ştefan Antohe						
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	2 evalua		lation	Е	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	40	distribution: lecture	20	Tutorials/Practicals	20/0
Distribution of estimated time for study				hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			30		
3.2.2. Research in library, study of electronic resources, field research			21		
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			30		
3.2.4. Examination			4		
3.2.5. Other activities					
3.3. Total hours of individual study	01				

3.3. Total hours of individual s	tudy 81
3.4. Total hours per semester	125
3.5. ECTS	5

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Solid State Physics I, Optics, Electronics, Electrodynamics
4.2. competences	44. Understanding the structural properties of thin films
	45. Knowledge and understanding of optical phenomena and charge carriers
	transport mechanisms of thin films
	46. Knowledge and understanding of the physical processes and phenomena typical
	for thin films based devices
	47. Understanding underlying physical phenomena
	48. Ability to analyze and understand relevant experimental data and to formulate
	rigorous conclusions

#### **5. Conditions/Infrastructure** (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practical	Experimental set-ups in Thin Films Laboratory and Nanotechnology
classes	Laboratory of Materials and Devices for Electronics and
	Optoelectronics R&D Center

#### 6. Acquired specific competencies

o. riequireu speen	le competencies
Professional	<b>51.</b> Knowledge and explanation of the physical properties of thin films
competencies	<b>52.</b> Knowledge and explanation of the physical properties of thin films based devices
	<b>53.</b> Development of specific capacities of analysis using fundamental processes and phenomena in Physics
	54. Development of the ability to create and properly use of mathematical and
	numerical models applied to thin films and their applications
	<b>55.</b> Analysis and communication of scientific data.
	<b>56.</b> Use and development of specific laboratory equipments.
Transversal competencies	<b>57.</b> Efficient use of scientific information resources for professional formation in English.
	<b>58.</b> Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

#### 7. Course objectives

71 Course objectives		
7.1. General objective	Knowledge and understanding of the physical properties of thin films and	
	their electronic and optoelectronic applications	
7.2. Specific objectives	Inorganic materials based thin films: A2B6 compounds and A3B5	
	compounds	
	Deposition methods of inorganic thin films	
	Study of the structural properties of inorganic thin films	
	Study of the morphological and optical properties of inorganic thin films	
	Study of the electrical properties of inorganic thin films	
	Organic materials based thin films: conductive polymers	
	Study of the structural properties of organic thin films	
	Study of the morphological and optical properties of organic thin films	
	Study of the electrical properties of organic thin films	
	Thin films based electronic and optoelectronic devices: transistors, photo-	
	diodes, photovoltaic structures, detectors	

#### 8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Inorganic materials based thin films. Introductory information. General presentation.	Systematic exposition - lecture.	2 hours
Organic materials based thin films. Introductory information. General presentation.	Systematic exposition - lecture.	2 hours
Thermal vacuum evaporation: working principle; specific processes and phenomena for A2B6 compounds and for A3B5 compounds; adsorption processes; condensation processes; appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Magnetron sputtering (RF and DC modes): working principle, specific process and phenomena, working parameters, the influence of working gas (non- reactive/reactive), appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Chemical vapor deposition: working principle,	Systematic exposition -	4 hours

diffusion phenomena, specific chemical processes involved, capacitive plasmas, appropriateness of the method.	lecture. Examples.	
Spin-coating: working principle, kinetics of solutions; appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Study of the structural properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Study of morphological and optical properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Study of the electrical properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Resume of lectures.	Systematic exposition - lecture. Examples.	2 hours

References:

- **33.** S. Antohe, *Electronic and Optoelectronic Devices Based on Organic Thin Films*, in *Handbook of Organic Electronics and Photonics: Electronic Materials and Devices*, H. Singh-Nalwa (Ed.) (American Scientific Publishers, Los Angeles, California, USA, 2006).
- **34.** S. Antohe, S. Iftimie, L. Hrostea, V.A. Antohe, M. Girtan, A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions in Thin Solid Films 642, 219-231, 2017.
- 35. M. Ohring, Materials Science of Thin Films, Academic Press, London, UK, 2002.
- **36.** Lecture notes available on <u>http://solid.fizica.unibuc.ro</u>.
- **37.** J. George, *Preparation of thin films*, Cochin University of Science and Technology, Cochin, Kerala, India, 1992.

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Deposition of thin films by thermal vacuum evaporation	Guided practical work	4 hours
Deposition of thin films by magnetron sputtering (RF and DC)	Guided practical work	4 hours
Growth of thin films by chemical vapor deposition	Guided practical work	4 hours
Growth of thin films by spin-coating	Guided practical work	4 hours
Study of the structural properties of inorganic and organic thin films: X-ray diffraction and X-ray reflectometry	Guided practical work	2 hours
Study of the morphological and optical properties of inorganic and organic thin films: atomic force microscopy, spectroscopic methods – absorption, transmission, reflection, ellipsometry	Guided practical work	2 hours
Study of the electrical properties of inorganic and organic thin films: current-voltage characteristics, van der Pauw measurements, Hall effect measurements	Guided practical work	2 hours
Hand-on lab test & quiz	Group project	2 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
References: 21. Laboratory notes		

**22.** M.P. Soriaga, J. Stickney, L.A. Bottomley, Y-G. Kim, *Thin Films. Preparation. Characterization. Applications.*, Spronger Science + Business Media, LLC, 2002.

## **9.** Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4 Lesture	Explicitness, scherence and	Multitton output	
10.4. Lecture	- Explicitness, coherence and	Written exam	70%
	concision of scientific statements;		
	- Correct use of physical models		
	and of specific mathematical		
	methods;		
	- Ability to analyze specific		
	examples;		
10.5.1. Tutorials			
10.5.2. Practicals	- Knowledge and correct use of	Colloquium	30%
	specific experimental techniques		
	- Data processing and analysis;		
<b>10.5.3. Project</b> [if			
applicable]			
10.6. Minimal requirements for passing the exam			
<b>Requirements for mark</b> 5	Requirements for mark 5 (10 points scale)		
Correct solving of subjects indicated as required for obtaining mark 5.			

Date	Teacher(s) name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2019	Prof. dr. Ştefan Antohe	
		Prof. dr. Ştefan Antohe

Date of approval 10.06.2019

Head of department, Assoc. Prof. dr. Petrică Cristea

## III. Optional course units

### DFC.113 Phase transitions in condensed matter

#### 1. Study program

<u>notuu</u> , program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of materials and nanostructures
1.7. Study mode	Full-time study

#### 2. Course unit

2.1. Course unit	2.1. Course unit title Interaction of laser radiation with matter								
2.2. Teacher			Conf. dr. Ciceron	Berb	ecaru				
2.3. Tutorials/Practicals instructor(s)		Conf. dr. Ciceron	Conf. dr. Ciceron Berbecaru						
2.5. Year of		2.6		2.7	7. Type of		2.8. Type	Content ¹⁾	DA
study	I	Semester	II	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

,		1		1	
3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	1/1
3.2. Total hours per semester					
	56	Lecture	28	Practicals/Tutorials	14/14
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			, bibliography	15	
3.2.2. Research in library, study of electronic resources, field research				15	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	
3.3. Total hours of individual study	40				

3.4. Total hours per semester	100	
3.5. ECTS	4	

#### 4. Prerequisites (if necessary)

4.1. curriculum	Solid State Physics, Quantum mechanics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for data analysis

5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Specialized laboratory setups

#### 6. Specific competences acquired

Professional competences	<ul> <li>Knowledge of physical phenomena associated to phase transitions</li> <li>Ability of comparing and analyzing physical phenomena based on fundamental principles</li> <li>Communication and analysis of scientific and general information in physics</li> </ul>
Transversal competences	<ul> <li>Efficient use of sources of information and communication resources and training assistance in a foreign language.</li> <li>accomplishment of professional tasks in a professional way, assuming an ethical conduct in scientific research;</li> </ul>

#### 7. Course objectives

7.1. General objective	Understanding of physical phenomena associated to phase transitions
7.2. Specific objectives	Highlighting essential aspects for understanding of phenomena which
	allows for creative solutions to physical problems

#### 8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Landau theory of phase transitions Symmetry breaking. Order parameter. Landau's thermodynamic theory. Onstein-Zernike theory – gaussian approximation. Landa-Ginzburg criterion. Introduction to critical phenomena	Systematic exposition - lecture. Examples	6 hours
<u>Dielectric materials – phase transitions</u> Permitivity and dielelctric losses. Debye theory. Frequency and temperature dependence of complex dielectric function. Applications.	Systematic exposition - lecture. Examples	8 hours
Phase transitions în ferroelectric materials. Definition, classifications, structure, properties. Phase transitions. Spontaneous polarization and dielectric function în 1-st order phase transitions. Ferroelectric domains. Polarization and dielectric function în phase în 2-nd order phase transitions.	Systematic exposition - lecture. Examples	8 hours
<u>Ferroelectric crystals.</u> Domain structure. Effects of temperature and external electric field. Investigation methods. Ferroelectric ceramics for electronics. Phase diagrams. Pyroelectric materials. Multiferroics.	Systematic exposition - lecture. Examples	6 hours

#### Bibliography:

**59.** M. Dondera, V. Florescu. *Capitole de fizica atomica teoretica, Ed. UB, 2005.* 

60. F.H.M. Faisal, Theory of multiphotonic processes, Plenum Press, 1987

**61.** C. J. Joachain, N. Kylstra, R. M. Potvliege, *Atoms in intense laser fields*, Cambridge University Press, 2012.

62. W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Phase transitions with order parameter. Examples	Lecture. Problem solving.	6 hours

Critical phenomena. Critical exponents. Examples.	Lecture. Problem solving.	4 hours
Ferroelectric and piesoelectric crystals. Structure of material tensors.	Lecture. Problem solving.	4 hours
<b>8.2. Practicals</b> [research subjects, projects]	Teaching and learning techniques	Observations
Temperature dependence of spontaneous polarization for 1-st and 2-nd order phase transitions	Guided practical activity	2 hours
Temperature dependence of dielectric functions near phase transition points.	Guided practical activity	4 hours
Frequency dependence of dielectric function. Dielectric spectroscopy.	Guided practical activity	4 hours
Ferroelectric materials. TGS – crystal growth and properties.	Guided practical activity	4 hours

Bibliography:

1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Wiley-VCH Verlag, 2004.

2. J. D. Jackson Classical Electrodynamics (Wiley, 1962).

3. M. Boca, Lecture notes

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after an analysis of the contents of similar course units in the syllabus of other universities (LMU, KTH). The contents are in line with the requirements/expectations of the main employers of the graduates (research, academic, secondary school teaching).

#### **10.** Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition	Written test/oral examination	
	- correct use of physical models and theories		50%
10.5.1. Tutorials			
10.5.2. Practicals	<ul> <li>Knowledge of experimental techniques</li> <li>Analysis of experimental results</li> </ul>	Colloquium	50%
<b>10.5.3. Project</b> [if applicable]			
10.6. Minimal requirem	ents for passing the exam		
· · ·	<b>5 (10 points scale)</b> cals have to be performed.		

#### Correct presentation of the subjects indicated for mark 5 in the final exams.

Date 25.05.2019

Teacher's name and signature Conf. dr. Ciceron Berbecaru Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Ciceron Berbecaru

Date of approval

Head of Department

10.06.2019

Conf. dr. Petrică Cristea

DFC.114 Interaction o	f laser radiation with matter
-----------------------	-------------------------------

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

### 1 64 - 1

#### 2. Course unit

2.1. Course unit title Interaction of laser radiation with matter									
2.2. Teacher			Conf. dr. Madaliı	na Boo	ca				
2.3. Tutorials/Pr	.3. Tutorials/Practicals instructor(s)				Conf. dr. Madaliı	na Boo	ca		
2.5. Year of		2.6			7. Type of		2.8. Type	Content ¹⁾	DA
study	I	Semester	II	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### 3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester					
	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					15
3.2.2. Research in library, study of electronic resources, field research					15
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study 40					

	40
3.4. Total hours per semester	100
3.5. ECTS	4

#### **4. Prerequisites** (if necessary)

4.1. curriculum	Electrodynamics and relativity theory, Quantum mechanics
4.2. competences	Numerical / using of approximation methods for solving differential equations

5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Computer, Video projector

#### 6. Specific competences acquired

Professional	
competences	- Identify and proper use of the main physical laws and principles in a given context.
	Identify and proper use of specific laws for simple systems in interaction with the
	electromagnetic field.
	-solving pf physics problems in given conditions
	- Using the acquired knowledge for understanding / modeling of processes in
	electromagnetic fields
	- Communication and analysis of didactic, scientific and general information in physics
Transversal	- Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language.
	- accomplishment of professional tasks in an professional way, assuming an ethical conduct
	in scientific research;

#### 7. Course objectives

7.1. General objective	Presentation of the main processes in the interaction of radiation with the substance
7.2 Specific objectives	
7.2. Specific objectives	Understanding the classical / quantum theory of the interaction of
	electromagnetic radiation with matter
	- Understanding the evolution in time of some systems in interaction with
	the electromagnetic field
	- The ability to use approximate / numerical mathematical models in the
	analysis of the interaction of electromagnetic radiation with matter

#### 8. Contents

<b>8.1. Lecture</b> [chapters]	Teaching techniques	Observations/ hours
Physical processes in electromagnetic fields: overview.	Systematic exposition - lecture. Examples	2 hours
Electromagnetic waves and photons; introduction	Systematic exposition - lecture. Examples	2 hours
Classical description of the electromagnetic field, plane wave, Gaussian modes	Systematic exposition - lecture. Examples	4 hours
Description of the electromagnetic field in quantum theory	Systematic exposition - lecture. Examples	4 hours
Free particle in electromagnetic field: classical / quantum description.	Systematic exposition - lecture. Examples	4 hours
Radiation interaction with atomic systems: amplitude / transition rate, effective sections.	Systematic exposition - lecture. Examples	4 hours
Multiphotonic processes, perturbative / non- perturbative description	Systematic exposition - lecture. Examples	2 hours
Radiation scattering (Rayleigh, Raman, Compton).	Systematic exposition - lecture. Examples	4 hours
Elements of quantum electrodynamics in intense fields	Systematic exposition - lecture. Examples	2 hours

### Bibliography:

**63.** M. Dondera, V. Florescu. *Capitole de fizica atomica teoretica, Ed. UB, 2005.* 

64. F.H.M. Faisal, *Theory of multiphotonic processes*, Plenum Press, 1987

**65.** C. J. Joachain, N. Kylstra, R. M. Potvliege, *Atoms in intense laser fields*, Cambridge University Press, 2012.

66. W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998				
<b>8.2. Tutorials</b> [main themes]	Teaching and learning techniques	Observations/hours		
Numerical / approximate solutions of the Maxwell equations	Lecture. Problem solving.	4 hours		
Motion of electrically charged particle in electromagnetic field, approximate / numerical solutions	Lecture. Problem solving.	6 hours		
Volkov solutions in non-relativistic quantum mechanics	Lecture. Problem solving.	8 hours		
Radiation reaction	Lecture. Problem solving.	4 hours		
Perturbative description of the interaction of radiation with simple systems	Lecture. Problem solving.	4 hours		
Elements of Floquet theory	Lecture. Problem solving.	2 hours		

Bibliography:

1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, *Atom-Photon Interactions*, Wiley-VCH Verlag, 2004. 2. J. D. Jackson Classical Electrodynamics (Wiley, 1962).

3. M. Boca, Lecture notes

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after an analysis of the contents of similar course units in the syllabus of other universities (LMU, KTH). The contents are in line with the requirements/expectations of the main employers of the graduates (research, academic, secondary school teaching).

#### 10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	- coherence and clarity of	Written test/oral examination			
	exposition				
	- correct use of		50%		
	equations/mathematical				
	methods/physical models and				
	theories				
	- ability to indicate/analyse				
	specific examples				
10.5.1. Tutorials	- ability to use specific problem solving methods	Homeworks/written tests	50%		
	solving methods				
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
Solving of all homework,					
Correct presentation of the	subjects indicated for mark 5 in the f	inal exam.			

Date 25.05.2019	Teacher's name and signature Conf. dr. Madalina Boca	Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Madalina Boca
Date of approval 10.06.2019	Head of Dep	oartment Prof.dr. Virgil Baran

## DFC.210 Computational methods in modern physics

#### 1. Study program

i otady program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of advanced materials and nanostructures
1.7. Study mode	Full-time study

#### 2. Course unit

2.1. Course titleComputation			odern	physics		
2.2. Teacher		Assoc. Prof. Alex	Assoc. Prof. Alexandru Nicolin / Lect. Dr. Roxana Zus			
2.3. Tutorials instructor(s)						
2.4. Practicals instructor(s)		Dr. Mihai Marciu				
2.6.	2.7. Type of			2.8. Type	Content ¹⁾	DA
Semester	r 1 evaluation		Е	of course unit	Type ²⁾	DO
_	r(s) pr(s) 2.6.	r(s) pr(s) 2.6. 2	Assoc. Prof. Alex r(s) Dr. Mihai Marciu 2.6. 2.7. Type of	Assoc. Prof. Alexandru       r(s)       pr(s)       2.6.       2.7. Type of	r(s) Dr. Mihai Marciu 2.6. 2.7. Type of 2.8. Type Semester 1 evaluation E of course	Assoc. Prof. Alexandru Nicolin / Lect. Dr. Roxana Zus r(s) Dr. Mihai Marciu 2.6. 2.7. Type of 2.8. Type Content ¹⁾ Semester 1 evaluation E of course Type ²⁾

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

#### **3. Total estimated time** (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	s per semester				
	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homework					30
3.2.4. Preparation for exam					4
3.2.5. Other activities					0
3.3. Total hours of individual study	90				

3.4	4. Total hours per semester	150
3.5	5. ECTS	6

#### 4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Linear algebra, Analytical mechanics, Electrodynamics,
	Quantum Mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

5.1. for lecture	
5.2. for practicals/tutorials	Scientific computing laboratory

#### 6. Specific competences acquired

<u></u>	ctenees acquirea
Professional	49. Understanding how to solve differential equations with Hamiltonian structure using
competences	the leapfrog method and related methods. Understanding time-reversibility and
	energy conservation.
	50. Understanding finite difference methods and their use in numerical study of the
	Schrödinger equation. Understanding the conservation of the norm of the wave function and the emergence of numerical instabilities.
	51. Understanding the use of finite difference methods for numerically solving Maxwell
	equations.
	52. Understanding the dynamics of electrically charged particles moving in an
	electromagnetic through the numerical solution of the Vlasov equation using the test particle method.
	53. Understanding <i>particle-in-cell</i> equations and self-consistent solution of field
	equations and those describing particle dynamics. Understanding the Boris
	algorithm for particle propagation over time and the Courant stability condition.
Transversal	<b>23.</b> Efficient use of scientific information resources and of communication and of
competences	resources for professional formation in English.
	24. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

#### 7. Course objectives

7.1. General objective	Presentation of computational methods in modern physics
7.2. Specific objectives	Study of leapfrog method and related methods for solving differential
	equations of Hamiltonian structure
	Study of finite-difference methods for solving the Schrödinger equation
	and Maxwell equations
	Study of the test particle method used to numerically solve the Vlasov
	equation
	Study of particle-in-cell equations that describe the dynamics of electri-
	cally charged particles in an electromagnetic field
	The study of the interaction of laser pulses with metal clusters

#### 8. Contents

	· · · · · · · · · · · · · · · · · · ·	
8.1. Lecture	Teaching techniques	Observations/ hours
Simplectic and near-simplectic methods for numer- ical solving of differential equations with Hamil- tonian structure. Energy and volume conservation in the phase space.	Systematic exposition - lecture. Examples	2 hours
Finite-difference methods for the three-dimensional Schrödinger equation (especially for periodic and harmonic potential). Conservation of the norm. Sta- bility conditions. Numerical instabilities. Border conditions. Analytical calculations for calibrating the accuracy of numerical schemes.	Systematic exposition - lecture. Examples	4 hours
Finite difference methods for Maxwell equations. Border conditions. Numerical instabilities.	Systematic exposition - lecture. Examples	6 hours
The Vlasov equation and the test particle method. Derivation of particle-in-cell equations. Study of shape functions.	Systematic exposition - lecture. Examples	4 hours
Self-consistent solving of field equations and those	Systematic exposition -	4 hours

describing particle dynamics. Boris algorithm for particle propagation over time. Courant stability condition.	lecture. Examples	
Interaction of laser pulses with metal clusters	Systematic exposition - lecture. Examples	4 hours
Comparative presentation of particle-in-cell codes available for solving equations.	Systematic exposition - lecture. Examples	4 hours

#### Bibliography:

- 38. B. Leimkuhler şi S. Reich, *Simulating Hamiltonian dynamics*, Cambridge University Press, 2004.
  39. D.F. Griffiths, J.W. Dold şi D.J. Silvester, *Essential partial differential equations*. *Analytical and computational aspects*, Springer, 2015.
- **40.** S. Mazumder, *Numerical methods for partial differential equations*. *Finite difference and finite volume methods*, Academic Press, 2016.
- 41. S.E. Koonin și D.C. Meredith, *Computational physics. Fortran versions*, Perseus Books, 1998.
- **42.** P. Mulser și D. Bauer, *High power laser-matter interaction*, Springer, 2010.
- 43. P.G. Reinhard și E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- **44.** K. Langanke, J.A. Maruhn și S.E. Koonin, Eds., *Computational Nuclear Physics 2. Nuclear Reactions*, Springer, 1993.
- **45.** T.D. Arber *et al.*, *Contemporary particle-in-cell approach to laser-plasma modelling*, Plasma Phys. Control. Fusion **57**, 113001 (2015)

8.2. Tutorials	Teaching and learning techniques	Observations
Solving the three-dimensional Schrödinger equation for a harmonic (radial) and periodic (transverse) potential. Variational determination of the solution of the Schrödinger equation with cubic nonlinearities.	Lecture. Problem solving	4 hours
The analytical solution of Maxwell equations in a two- and three-dimensional numerical setup, in homogeneous environments.	Lecture. Problem solving	4 hours

Bibliography:

G.L. Squires, *Problems in quantum mechanics with solutions*, Cambridge University Press, 1995. Y.-K. Lim, *Problems and solutions on electromagnetism*, World Scientific, 1993

8.3 Laboratory	Teaching and learning techniques	Observations
Numerical solution of differential equations with Hamiltonian structure by simplectic and quasi-sim- plectic methods. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
The numerical solution of the Schrödinger equa- tion. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
Numerical solution of Maxwell equations. Code in Octave/python/C/C++	Supervised practical activity	4 hours
Numerical solution of particle-in-cell equations. Observation of ultra-intense laser pulse interaction with gaseous and solid targets, wakefield accelera- tion. Use of EPOCH PIC code	Supervised practical activity	6 hours
Numerical solution of the Vlasov equation. Use of existing FORTRAN programs	Supervised practical activity	2 hours
Bibliography:		

67. B. Leimkuhler și S. Reich, *Simulating Hamiltonian dynamics*, Cambridge University Press, 2004.

**68.** K.W. Morton și D.F. Mayers, *Numerical solution of partial differential equations*, Cambridge University Press, 2005.

69. Yu.N. Grigoryev et al., Numerical particle-in-cell methods: Theory and applications, de Gruyter,

2002.		
8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

# 9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

#### **10.** Assessment

			10.0	
			10.3.	
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight in	
			final mark	
10.4. Lecture	- Clarity and coherence of	Written test/oral examination		
	exposition			
	- Correct use of the methods/		60%	
	physical models			
	- The ability to give specific			
	examples			
10.5.1. Tutorials	- Ability to use specific problem-	Homework	10%	
	solving methods			
10.5.2 Laboratory	- Ability to use specific problem-	Homework	30%	
	solving methods			
10.5.3 Project				
10.6. Minimal requirements for passing the exam				
Requirements for mark 5 (10 points scale)				
At least 50% of exam score and of homeworks.				

Date 10.06.2019	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)	
	Assoc. Prof. Alexandru Nicolin, Lect. Dr. Roxana Zus	Dr. Mihai Marciu,	
Date of approval		Head of Department	
		Prof. Virgil Băran	